Abstract
Density functional calculations in periodic boundary conditions (PBCs) were performed to investigate the structural and electronic properties of neutral and charged M@C60 (M = Li, Na, or K). Minimal energy structures for each compounds were obtained. The structural analysis shows that the geometrical shape of the endohedral fullerenes is not perfectly spherical. In the periodic boundary conditions, only K and K+ retain their position in the center of fullerene while (Li) and (Na) are shifted from the center by 1.53 and 0.89 Å respectively. Mulliken population analysis indicated that the M-C60 bond may be purely ionic in the case of encapsulated K and Na, and partly ionic in the case of Li. For all compounds, the highest occupied cluster orbitals (HOCOs), the lowest unoccupied cluster orbitals (LUCOs) and the Gap energy were calculated and compared with literature.
The results obtained using PBCs approach show that the simulation model used in this study is indeed appropriate, it not only agrees very well with other theoretical methods but also is consistent with experimental results for C60. Furthermore, this model provide new Gap values for (M@C60) compound (M = Li, Na, or K) that can be used by the scientific community for deriving other electronic properties.
This is a preview of subscription content, access via your institution.







REFERENCES
J. Adams, G. D. Spyropoulos, M. Salvadoret, et al., Energy Environ. Sci. 8, 169 (2015).
T. R. Andersen, H. F. Dam, B. Andreasen, et al., Sol. Energy Mater. Sol. Cells 120, 735 (2014).
P. Kumar and S. Chand, Prog. Photovolt.: Res. Appl. 20, 377 (2011).
M. S. Mauter and M. Elimelech, Environ. Sci. Technol. 42, 5843 (2008).
K. G. Thomas, V. Biju, D. Guldi, et al., J. Phys. Chem. A 103, 10755 (1999).
D. M. Guldi and M. Prato, Acc. Chem. Res. 33, 695 (2000).
M. Fujitsuka, K. Matsumoto, O. Ito, et al., Res. Chem. Intermed. 27, 73 (2001).
J. Liu, J. Li, X. Liu, et al., Org. Electron. 71, 36 (2019).
H. S. Kim, H. J. Park, S. K. Lee, et al., Org. Electron. 71, 238 (2019).
Y.-J. Huang, P.-J. Yen, H.-C. Wang, et al., Org. Electron. 72, 6 (2019).
Z. Li, Q. Zhang, C. Zhang, et al., Org. Electron. 66, 70 (2019).
Y.-H. Lou, L. Zhang, M.-F. Xu, et al., Org. Electron. 15, 299 (2014).
M. B. Upama, N. K. Elumalai, M. A. Mahmud, et al., Org. Electron. 50, 279 (2017).
A. Adini, M. Redlich, R. Tenne, et al., J. Mater. Chem. 21, 15121 (2011).
L. Yang, L. Zhang, and T. J. Webster, Nanomedicine 6, 1231 (2011).
W. Zhao, S. Li, H. Yao, et al., J. Am. Chem. Soc. 139, 7148 (2017).
M. Zhang, J. Wang, F. Zhang, et al., Nano Energy 39, 571 (2017).
T. Fukuda, K. Suzuki, N. Yoshimoto, et al., Org. Electron. 33, 32 (2016).
F. C. Franco and A. A. B. Padama, Polymer 97, 55 (2016).
N. Blouin, A. Michaud, and M. Leclerc, Adv. Mater. 19, 2295 (2007).
N. Banerji, E. Gagnon, P.-Y. Morgantini, et al., J. Phys. Chem. C 116, 11456 (2012).
N. Agnihotri, J. Photochem. Photobiol. Sci. 18, 18 (2014).
L. G. Kaake, J. J. Jasieniak, R. C. Bakus, et al., J. Am. Chem. Soc. 134, 19828 (2012).
K. Sail, G. Bassou, M. H. Gafour, et al., J. Exp. Theor. Phys. 121, 1015 (2015).
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford Univ. Press, New York, 1989).
K. Ohkubo, Y. Kawashima, H. Sakai, et al., Chem. Commun. 49, 4474 (2013).
H. Sakai, T. Kamimura, F. Tani, et al., J. Porphyr. Phthalocyan. 19, 242 (2015).
C. M. Tran, H. Sakai, Y. Kawashima, et al., Org. Electron. 45, 234 (2017).
H. Malani and D. Zhang, J. Phys. Chem. A 117, 3521 (2013).
A. Valderrama and J. Guzman, J. Mol. Model. 20, 2130 (2014).
M. Stener, G. Fronzoni, M. Venuti, et al., Chem. Phys. Lett. 309, 129 (1999).
O. V. de Oliveira and A. da Silva Gonççalves, Comput. Chem. 2, 51 (2014).
E. Brocławik and A. Eilmes, J. Chem. Phys. 108, 3498 (1998).
B. I. Dunlap, J. L. Ballester, and P. P. Schmidt, J. Phys. Chem. 96, 9781 (1992).
M. Pavanello, A. F. Jalbout, B. Trzaskowski, et al., Chem. Phys. Lett. 442, 339 (2007).
J. Cioslowski and E. D. Fleischmann, J. Chem. Phys. 94, 3730 (1991).
A. Ruiz, J. Hernández-Rojas, J. Breton, et al., J. Chem. Phys. 109, 3573 (1998).
D. Tomanek and Y. Li, Chem. Phys. Lett. 243, 42 (1995).
A. Hira and A. Ray, Phys. Rev. A 52, 141 (1995).
H. Bai, H. Gao, W. Feng, et al., Nanomaterials 9, 630 (2019).
T. A. Beu, J. Onoe, and A. Hida, Phys. Rev. B 72, 155416 (2005).
S. Polad and S. Erkoc, J. Comput. Theor. Nanosci. 8, 674 (2011).
C. Risko, M. D. McGehee, and J.-L. Bredas, Chem. Sci. 2, 1200 (2011).
P. Hohenberg, Phys. Rev. B 136, 864 (1964).
W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).
M. A. Marques and E. K. Gross, Ann. Rev. Phys. Chem. 55, 427 (2004).
A. D. Becke, Phys. Rev. A 38, 3098 (1988).
A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
C. Lee, Phys. Rev. B 37, 785 (1988).
S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200 (1980).
T. M. Pappenfus, J. A. Schmidt, R. E. Koehn, et al., Macromolecules 44, 2354 (2011).
S. S. Zade and M. Bendikov, Org. Lett. 8, 5243 (2006).
S. S. Zade, N. Zamoshchik, and M. Bendikov, Acc. Chem. Res. 44, 14 (2011).
J. P. Perdew, Phys. Rev. Lett. 77, 3865 (1996).
J. P. Perdew, Phys. Rev. Lett. 100, 136406 (2008).
M. Frisch, G. Trucks, H. Schlegel, et al., Gaussian 09 D.01, Revision A1 (Gaussian Inc., Wallingford CT, 2009).
R. Dennington, T. Keith, J. Millam, et al., GaussView, Version 5 (Semichem Inc., Shawnee Mission, KS, 2009).
A. Goel, J. B. Howard, and J. B. V. Sande, Carbon 42, 1907 (2004).
M. Stefanou, H. J. Chandler, B. Mignolet, et al., Nanoscale 11, 2668 (2019).
Y. Wang, D. Tomanek, and R. S. Ruoff, Chem. Phys. Lett. 208, 79 (1993).
Y. Li and D. Tomanek, Chem. Phys. Lett. 221, 453 (1994).
K. Komatsu, M. Murata, and Y. Murata, Science (Washington, DC, U. S.) 307, 238 (2005).
S. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).
R. M. Richard, K. U. Lao, and J. M. Herbert, J. Phys. Chem. Lett. 4, 2674 (2013).
H. Shinohara, Rep. Prog. Phys. 63, 843 (2000).
A. A. Popov, S. Yang, and L. Dunsch, Chem. Rev. 113, 5989 (2013).
R. Koeppe and N. Sariciftci, Photochem. Photobiol. Sci. 5, 1122 (2006).
R. Kremer, T. Rabenau, W. Maser, et al., Appl. Phys. A 56, 211 (1993).
F. A. Zaghmarzi, M. Zahedi, A. Mola, et al., Phys. E (Amsterdam, Neth.) 87, 51 (2017).
ACKNOWLEDGMENTS
This study was carried out within the framework of a collaboration between the L2MSM laboratory of Sidi Bel Abbes (Algeria) and the LEM3 laboratory of Metz (France). High Performance Computing resources were partially provided by the EXPLOR center hosted by the University of Lorraine. The authors gratefully acknowledge Dr. Muhannad Altarsha, Research Engineer in Scientific Computing at Lorraine University for helpful on Gaussian software.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Gafour, M.H., Saïl, K., Bassou, G. et al. Theoretical Study of Endohedral Fullerenes M@C60 (M = Li, Na, or K) in Periodic Boundary Conditions. J. Exp. Theor. Phys. 131, 548–557 (2020). https://doi.org/10.1134/S1063776120090034
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063776120090034