Skip to main content
Log in

Weak Antiferromagnet Iron Borate FeBO3. Classical Object for Magnetism and the State of the Art

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The simple lattice and magnetic structure, the high Néel temperature, the narrow antiferromagnetic resonance line of FeBO3, and the narrow electron paramagnetic resonance line of its isostructural diamagnetic analogs MBO3:Fe3+ (M = Ga, In, Sc, Lu) make iron borate unique for investigations and applications. Iron borate is a model crystal for numerous experimental and theoretical studies, including spin crossovers and metallization at megabar pressures and many-electron effects in optics and X-ray spectroscopy. The recent works dealing with the investigation of the properties of FeBO3 are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. A. S. Borovik-Romanov and M. P. Orlova, Sov. Phys. JETP 4, 531 (1956).

    Google Scholar 

  2. A. S. Borovik-Romanov, Sov. Phys. JETP 9, 539 (1959).

    Google Scholar 

  3. A. S. Borovik-Romanov and E. G. Rudashevskii, Sov. Phys. JETP 20, 1407 (1964).

    Google Scholar 

  4. A. S. Borovik-Romanov, in Problems of Magnetism, Collection of Articles (Nauka, Moscow, 1972), p. 47 [in Russian].

    Google Scholar 

  5. I. Bernal, C. W. Struck, and J. G. White, Acta Crystallogr. 16, 849 (1963).

    Google Scholar 

  6. V. V. Rudenko, V. N. Seleznev, and R. P. Smolin, in Proceedings of the 4th All-Union Workshop on Crystal Growth, Erevan,1972, p. 149.

  7. L. V. Velikov, E. G. Rudashevskii, and V. N. Seleznev, Izv. Akad. Nauk SSSR 36, 1531 (1972).

    Google Scholar 

  8. L. V. Velikov, A. S. Prokhorov, E. G. Rudashevskii, and V. N. Seleznev, JETP Lett. 15, 511 (1972).

    ADS  Google Scholar 

  9. A. M. Kadomtseva, R. Z. Levitin, Yu. F. Popov, V. V. Uskov, and V. N. Seleznev, Sov. Phys. Solid State 14, 172 (1972).

    Google Scholar 

  10. R. Diehl, A. Raubar, and F. Friedrich, J. Cryst. Growth 29, 225 (1975).

    ADS  Google Scholar 

  11. L. N. Bezmaternykh, V. G. Mashchenko, V. A. Chikha-chev, and V. S. Bliznyakov, Inventor’s Certificate No. 1059029 (1983).

  12. S. G. Ovchinnikov and V. V. Rudenko, J. Cryst. Growth 455, 55 (2016).

    ADS  Google Scholar 

  13. S. Yagupov, M. Strugatsky, K. Seleznyova, et al., Cryst. Growth Des. 18, 7435 (2018).

    Google Scholar 

  14. S. Yagupov, M. Strugatsky, K. Seleznyova, et al., J. Magn. Magn. Mater. 417, 338 (2016).

    ADS  Google Scholar 

  15. S. G. Ovchinnikov and V. V. Rudenko, Phys. Usp. 57, 1180 (2014).

    ADS  Google Scholar 

  16. A. Kirilyuk, A. V. Kimel, and T. Rasing, Rev. Mod. Phys. 82, 2731 (2010).

    ADS  Google Scholar 

  17. I. S. Lyubutin and A. G. Gavriliuk, Phys. Usp. 52, 989 (2009).

    ADS  Google Scholar 

  18. V. E. Dmitrienko, E. N. Ovchinnikova, S. P. Collins, et al., Nat. Phys. 10, 202 (2014).

    Google Scholar 

  19. S. G. Ovchinnikov and V. N. Zabluda, J. Exp. Theor. Phys. 98, 135 (2004).

    ADS  Google Scholar 

  20. S. G. Ovchinnikov, B. A. Gizhevskii, N. V. Kazak, V. V. Rudenko, and A. V. Telegin, JETP Lett. 90, 519 (2009).

    ADS  Google Scholar 

  21. J. Kim, Yu. Shvyd’ko, and S. G. Ovchinnikov, Phys. Rev. B 83, 235109 (2011).

    ADS  Google Scholar 

  22. J. Kim, V. V. Struzhkin, S. G. Ovchinnikov, Yu. Orlov, et al., Europhys. Lett. 108, 37001 (2014).

    ADS  Google Scholar 

  23. V. A. Gavrichkov, S. G. Ovchinnikov, A. A. Borisov, and E. V. Goryachev, J. Exp. Theor. Phys. 91, 369 (2000).

    ADS  Google Scholar 

  24. S. G. Ovchinnikov, JETP Lett. 77, 676 (2003).

    ADS  Google Scholar 

  25. M. M. Korshunov, V. A. Gavrichkov, S. G. Ovchinnikov, et al., Phys. Rev. B 72, 165104 (2005).

    ADS  Google Scholar 

  26. M. M. Korshunov, S. G. Ovchinnikov, E. I. Shneyder, et al., Mod. Phys. Lett. B 26, 1230016 (2012).

    ADS  Google Scholar 

  27. G. Beutier, S. P. Collins, O. V. Dmitrova, et al., Phys. Rev. Lett. 119, 167201 (2017).

    ADS  Google Scholar 

  28. A. S. Borovik-Romanov, in Results of Science, Collection of Articles (Akad. Nauk SSSR, Moscow, 1962), p. 7 [in Russian].

    Google Scholar 

  29. E. A. Turov, Physical Properties of Magnetically Ordered Crystals (Akad. Nauk SSSR, Moscow, 1963), p. 224 [in Russian].

    Google Scholar 

  30. Y. Joly, O. Bunau, J. E. Lorenzo, et al., J. Phys.: Conf. Ser. 190, 012007 (2009).

    Google Scholar 

  31. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    ADS  Google Scholar 

  32. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    ADS  Google Scholar 

  33. S. G. Ovchinnikov, V. V. Rudenko, and A. M. Vorotynov, J. Exp. Theor. Phys. 128, 443 (2019).

    ADS  Google Scholar 

  34. C. N. Lukin, V. V. Rudenko, V. N. Seleznev, et al., Sov. Phys. Solid State 22, 29 (1980).

    Google Scholar 

  35. S. A. Al’tshuler and B. M. Kozyrev, Electron Paramagnetic Resonance in Compounds of Transition Elements (Wiley, New York, 1974; Nauka, Moscow, 1972).

  36. W. P. Wolf, Phys. Rev. 108, 1152 (1957).

    ADS  Google Scholar 

  37. V. G. Bar’yakhtar, V. D. Doroshev, N. M. Kovtun, et al., in Proceedings of the 19th All-Union Workshop on Low Temperature Physics Minsk,1976, p. 80.

  38. P. J. Flanders, J. Appl. Phys. 43, 2430 (1972).

    ADS  Google Scholar 

  39. S. G. Ovchinnikov, V. V. Rudenko, and V. I. Tugarinov, Phys. Solid State 58, 1995 (2016).

    ADS  Google Scholar 

  40. M. Eibschutz and M. E. Lines, Phys. Rev. B 7, 4907 (1973).

    ADS  Google Scholar 

  41. L. Neel, J. Phys. Radium 15, 225 (1954).

    Google Scholar 

  42. G. S. Krinchik, A. P. Khrebtov, A. A. Askochenskii, and V. E. Zubov, JETP Lett. 17, 335 (1973).

    ADS  Google Scholar 

  43. E. A. Balykina, E. A. Gan’shina, and G. S. Krinchik, Sov. Phys. JETP 66, 1073 (1987).

    Google Scholar 

  44. V. E. Zubov, G. S. Krinchik, V. N. Seleznev, and M. B. Strugatskii, Sov. Phys. JETP 67, 2122 (1988).

    Google Scholar 

  45. E. M. Maksimova, I. A. Nauhatsky, M. B. Strugatsky, and V. E. Zubov, J. Magn. Magn. Mater. 322, 477 (2010).

    ADS  Google Scholar 

  46. M. Strugatsky, K. Seleznyova, V. Zubov, et al., Surf. Sci. 668, 80 (2018).

    ADS  Google Scholar 

  47. V. E. Zubov, G. S. Krinchik, V. N. Seleznyov, and M. B. Strugatsky, J. Magn. Magn. Mater. 86, 105 (1990).

    ADS  Google Scholar 

  48. M. H. Seavey, Solid State Commun. 10, 219 (1972).

    ADS  Google Scholar 

  49. M. B. Strugatsky and K. M. Skibinsky, J. Magn. Magn. Mater. 309, 64 (2007).

    ADS  Google Scholar 

  50. V. Preobrazhensky, O. Evstafyev, P. Pernod, and V. Berzhansky, J. Magn. Magn. Mater. 322, 585 (2010).

    ADS  Google Scholar 

  51. O. Yevstafyev, V. Preobrazhensky, P. Pernod, and V. Berzhansky, J. Magn. Magn. Mater. 323, 1568 (2011).

    ADS  Google Scholar 

  52. V. L. Preobrazhenskii, V. V. Rudenko, F. Perno, and V. I. Ozhogin, JETP Lett. 86, 348 (2007).

    ADS  Google Scholar 

  53. J. Zaanen, G. A. Sawatzky, and J. W. Allen, Phys. Rev. Lett. 55, 418 (1985).

    ADS  Google Scholar 

  54. W. Schuelke, Characteristic Valence Electron Excitations. Electron Dynamics by Inelastic X-Ray Scattering (Oxford Univ. Press, New York, 2007), p. 71.

    Google Scholar 

  55. F. de Groot and A. Kotani, Core Level Spectroscopy of Solids (CRC, Boca Raton, FL, 2008), p. 512.

    Google Scholar 

  56. L. J. P. Ament, M. van Veenendaal, T. P. Devereaux, et al., Rev. Mod. Phys. 83, 705 (2011).

    ADS  Google Scholar 

  57. S. G. Ovchinnikov, Phys. Usp. 40, 993 (1997).

    ADS  Google Scholar 

  58. I. W. Shepherd, Phys. Rev. B 5, 4524 (1972).

    ADS  Google Scholar 

  59. Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. 9, 766 (1954).

    ADS  Google Scholar 

  60. D. T. Sviridov and Yu. F. Smirnov, Theory of Optical Spectra of Transition Metal Ions (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  61. A. G. Gavriliuk, I. A. Trojan, R. Boehler, M. Eremets, A. Zerr, I. S. Lyubutin, and V. A. Sarkisyan, JETP Lett. 75, 23 (2002).

    ADS  Google Scholar 

  62. V. A. Sarkisyan, I. A. Troyan, I. S. Lyubutin, A. G. Gavrilyuk, and A. F. Kashuba, JETP Lett. 76, 664 (2002).

    ADS  Google Scholar 

  63. A. G. Gavriliuk, I. A. Trojan, S. G. Ovchinnikov, I. S. Lyubutin, and V. A. Sarkisyan, J. Exp. Theor. Phys. 99, 566 (2004).

    ADS  Google Scholar 

  64. A. G. Gavriliuk, I. A. Trojan, I. S. Lyubutin, S. G. Ovchinnikov, and V. A. Sarkissian, J. Exp. Theor. Phys. 100, 688 (2005).

    ADS  Google Scholar 

  65. I. A. Troyan, M. I. Eremets, A. G. Gavrilyuk, I. S. Lyu-butin, and V. A. Sarkisyan, JETP Lett. 78, 13 (2003).

    ADS  Google Scholar 

  66. I. A. Troyan, A. G. Gavrilyuk, S. G. Ovchinnikov, I. S. Lyubutin, and N. V. Kazak, JETP Lett. 94, 748 (2011).

    ADS  Google Scholar 

  67. S. G. Ovchinnikov, Sov. Phys. Solid State 21, 1724 (1979).

    Google Scholar 

  68. V. V. Val’kov and D. M. Dzebisashvili, JETP Lett. 67, 289 (1998).

    ADS  Google Scholar 

  69. V. A. Gavrichkov, S. I. Polukeev, and S. G. Ovchinnikov, Phys. Rev. B 95, 144424 (2017).

    ADS  Google Scholar 

  70. V. A. Gavrichkov, S. I. Polukeev, and S. G. Ovchinnikov, J. Exp. Theor. Phys. 127, 713 (2018).

    ADS  Google Scholar 

  71. A. M. Kalashnikova, A. V. Kimel, R. V. Pisarev, et al., Phys. Rev. B 78, 104301 (2008).

    ADS  Google Scholar 

  72. R. V. Mikhaylovsky, E. Hendry, A. Secchi, et al., Nat. Commun. 6, 8190 (2015).

    ADS  Google Scholar 

  73. E. A. Mashkovich, K. A. Grishunin, R. V. Michaylovsky, et al., Phys. Rev. Lett. 123, 157202 (2019).

    ADS  Google Scholar 

  74. S. G. Ovchinnikov, V. A. Gavrichkov, S. I. Polukeev, and A. V. Malakhovskii, Phys. Met. Metallogr. 120 (13), 91 (2019).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank I.S. Lyubutin, A.G. Gavrilyuk, I.A. Troyan, and A.M. Vorotynov for the long-term useful cooperation in studying the properties of ferroborates; R.V. Pisarev, A.V. Kimel’, A.M. Kalashnikova, and R.V. Mikhailovskii for the helpful discussions of the problems of ultrafast magnetism and femtosecond optics; and L.M. Rudenko for the technical assistance.

Funding

This work was supported by the Russian Science Foundation, project no. 18-12-00022.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. G. Ovchinnikov or V. V. Rudenko.

Ethics declarations

This article was prepared for the special issue dedicated to the centenary of A.S. Borovik-Romanov.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovchinnikov, S.G., Rudenko, V.V., Kazak, N.V. et al. Weak Antiferromagnet Iron Borate FeBO3. Classical Object for Magnetism and the State of the Art. J. Exp. Theor. Phys. 131, 177–188 (2020). https://doi.org/10.1134/S106377612007016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612007016X

Navigation