Skip to main content
Log in

Composite Topological Objects in Topological Superfluids

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The spontaneous phase coherent precession of magnetization, discovered in 1984 by Borovik-Romanov, Bunkov, Dmitriev, and Mukharskiy [1] in collaboration with Fomin [2], became now an important experimental tool for study complicated topological objects in superfluid 3He.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, and Yu. M. Mukharskiy, JETP Lett. 40, 1033 (1984).

    ADS  Google Scholar 

  2. I. A. Fomin, JETP Lett. 40, 1037 (1984).

    ADS  Google Scholar 

  3. D. D. Osheroff, R. C. Richardson, and D. M. Lee, Phys. Rev. Lett. 28, 885 (1972).

    ADS  Google Scholar 

  4. G. E. Volovik, The Universe in a Helium Droplet (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  5. A. S. Borovik-Romanov, Yu. M. Bunkov, V. V. Dmitriev, and Yu. M. Mukharskiy, Sov. Phys. JETP 61, 1199 (1985).

    Google Scholar 

  6. Yu. M. Bunkov and G. E. Volovik, in Novel Superfluids, Ed. by K. H. Bennemann and J. B. Ketterson, Vol. 156 of International Series of Monographs on Physics (Oxford Univ. Press, New York, 2013), Vol. 1, Chap. 4, p. 253.

  7. D. Vollhardt and P. Wolfle, The Superfluid Phases of Helium 3 (Dover, New York, 2013).

  8. P. M. Walmsley and A. I. Golov, Phys. Rev. Lett. 109, 215301 (2012).

    ADS  Google Scholar 

  9. H. Ikegami, Y. Tsutsumi, and K. Kono, Science (Washington, DC, U. S.) 341, 59 (2013).

    ADS  Google Scholar 

  10. H. Ikegami, Y. Tsutsumi, and K. Kono, J. Phys. Soc. Jpn. 84, 044602 (2015).

    ADS  Google Scholar 

  11. T. Mizushima, Ya. Tsutsumi, M. Sato, and K. Machida, J. Phys.: Condens. Matter 27, 113203 (2015).

    ADS  Google Scholar 

  12. T. Mizushima, Ya. Tsutsumi, T. Kawakami, M. Sato, M. Ichioka, and K. Machida, J. Phys. Soc. Jpn. 85, 022001 (2016).

    ADS  Google Scholar 

  13. V. V. Dmitriev, A. A. Senin, A. A. Soldatov, and A. N. Yudin, Phys. Rev. Lett. 115, 165304 (2015).

    ADS  Google Scholar 

  14. W. P. Halperin, J. M. Parpia, and J. A. Sauls, Phys. Today 71 (11), 30 (2018); arXiv: 1812.04828.

  15. I. A. Fomin, J. Exp. Theor. Phys. 127, 933 (2018).

    ADS  Google Scholar 

  16. V. B. Eltsov, T. Kamppinen, J. Rysti, and G. E. Volovik, arXiv: 1908.01645.

  17. G. E. Volovik, JETP Lett. 107, 324 (2018); arXiv: 1801.04576.

  18. Y. Kondo, J. S. Korhonen, M. Krusius, V. V. Dmitriev, E. V. Thuneberg, and G. E. Volovik, Phys. Rev. Lett. 68, 3331 (1992).

    ADS  Google Scholar 

  19. J. S. Korhonen, Y. Kondo, M. Krusius, E. V. Thuneberg, and G. E. Volovik, Phys. Rev. B 47, 8868 (1993).

    ADS  Google Scholar 

  20. G. E. Volovik and V. P. Mineev, JETP Lett. 24, 561 (1976).

    ADS  Google Scholar 

  21. A. S. Schwarz, Nucl. Phys. B 208, 141 (1982).

    ADS  Google Scholar 

  22. M. M. Salomaa and G. E. Volovik, Rev. Mod. Phys. 59, 533 (1987).

    ADS  Google Scholar 

  23. S. Autti, V. V. Dmitriev, V. B. Eltsov, J. Makinen, G. E. Volovik, A. N. Yudin, and V. V. Zavjalov, Phys. Rev. Lett. 117, 255301 (2016); arXiv: 1508.02197.

  24. J. T. Mäkinen, V. V. Dmitriev, J. Nissinen, J. Rysti, G. E. Volovik, A. N. Yudin, K. Zhang, and V. B. Eltsov, Nat. Commun. 10, 237 (2019); arXiv:1807.04328.

  25. O. T. Ikkala, G. E. Volovik, P. J. Hakonen, Yu. M. Bunkov, S. T. Islander, and G. A. Kharadze, JETP Lett. 35, 416 (1982).

    ADS  Google Scholar 

  26. E. V. Thuneberg, Phys. Rev. Lett. 56, 359 (1986).

    ADS  Google Scholar 

  27. G. E. Volovik and M. M. Salomaa, JETP Lett. 42, 521 (1985).

    ADS  Google Scholar 

  28. Y. Kondo, J. S. Korhonen, M. Krusius, V. V. Dmitriev, Yu. M. Mukharskiy, E. B. Sonin and G. E. Volovik, Phys. Rev. Lett. 67, 81 (1991).

    ADS  Google Scholar 

  29. G. E. Volovik, JETP Lett. 52, 358 (1990).

    ADS  Google Scholar 

  30. M. A. Silaev, E. V. Thuneberg, and M. Fogelström, Phys. Rev. Lett. 115, 235301 (2015).

    ADS  Google Scholar 

  31. T. W. B. Kibble, G. Lazarides, and Q. Shafi, Phys. Rev. D 26, 435 (1982).

    ADS  Google Scholar 

  32. E. Witten, Nucl. Phys. B 249, 557 (1985).

    ADS  Google Scholar 

  33. V. V. Zavjalov, S. Autti, V. B. Eltsov, P. Heikkinen, and G. E. Volovik, Nat. Commun. 7, 10294 (2016).

    ADS  Google Scholar 

  34. G. E. Volovik, JETP Lett. 109, 499 (2019); arXiv:1903.02418.

  35. N. D. Mermin and T.-L. Ho, Phys. Rev. Lett. 36, 594 (1976).

    ADS  Google Scholar 

  36. V. R. Chechetkin, Sov. Phys. JETP 44, 766 (1976).

    ADS  Google Scholar 

  37. P. W. Anderson and G. Toulouse, Phys. Rev. Lett. 38, 508 (1977).

    ADS  Google Scholar 

  38. Ü. Parts, E. V. Thuneberg, G. E. Volovik, J. H. Koivuniemi, V. M. H. Ruutu, M. Heinilä, J. M. Karimäki, and M. Krusius, Phys. Rev. Lett. 72, 3839 (1994).

    ADS  Google Scholar 

  39. Ü. Parts, M. Krusius, J. H. Koivuniemi, V. M. H. Ruutu, E. V. Thuneberg, and G. E. Volovik, JETP Lett. 59, 851 (1994).

    ADS  Google Scholar 

  40. V. B. Eltsov, R. Blaauwgeers, N. B. Kopnin, M. Krusius, J. J. Ruohio, R. Schanen, and E. V. Thuneberg, Phys. Rev. Lett. 88, 065301 (2002).

    ADS  Google Scholar 

  41. G. E. Volovik and M. Krusius, Priroda, No. 4, 56 (1994).

  42. G. E. Volovik, Phys. Usp. 58, 897 (2015).

    ADS  Google Scholar 

  43. L. D. Landau and E. M. Lifshitz, Dokl. Akad. Nauk SSSR 100, 669 (1955).

    Google Scholar 

  44. S. Blaha, Phys. Rev. Lett. 36, 874 (1976).

    ADS  Google Scholar 

  45. G. E. Volovik and V. P. Mineev, JETP Lett. 23, 593 (1976).

    ADS  Google Scholar 

  46. Yifung Ng, T. W. B. Kibble, and T. Vachaspati, Phys. Rev. D 78, 046001 (2008).

    ADS  MathSciNet  Google Scholar 

  47. N. D. Mermin, in Quantum Fluids and Solids, Ed. by S. B. Trickey, E. D. Adams, and J. W. Dufty (Plenum, New York, 1977), p. 3.

    Google Scholar 

  48. G. E. Volovik, JETP Lett. 28, 59 (1978).

    ADS  Google Scholar 

  49. M. Krusius, A. P. Finne, R. Blaauwgeers, V. B. Eltsov, and G. E. Volovik, Phys. B (Amsterdam, Neth.) 329–333, 91 (2003).

  50. M. W. Ray, E. Ruokokoski, S. Kandel, M. Möttönen, and D. S. Hall, Nature (London, U.K.) 505, 657 (2014).

    ADS  Google Scholar 

  51. T. Sh. Misirpashaev and G. E. Volovik, J. Exp. Theor. Phys. 75, 650 (1992).

    Google Scholar 

  52. Y. Nambu, Nucl. Phys. B 130, 505 (1977).

    ADS  Google Scholar 

  53. G. Lazarides and Q. Shafi,  JHEP 10, 193 (2019). arXiv:1904.06880.

  54. T. T. Heikkilä and G. E. Volovik, New J. Phys. 17, 093019 (2015).

    ADS  Google Scholar 

  55. G. E. Volovik and K. Zhang, Phys. Rev. Res. 2, 023263 (2020), arXiv:2002.07578.

Download references

ACKNOWLEDGMENTS

I thank Q. Shafi for the discussions that ultimately led to this article.

Funding

This work has been supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 694248).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. E. Volovik.

Ethics declarations

The article was prepared for the special issue dedicated to the centenary of A.S. Borovik-Romanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volovik, G.E. Composite Topological Objects in Topological Superfluids. J. Exp. Theor. Phys. 131, 11–17 (2020). https://doi.org/10.1134/S1063776120070146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120070146

Navigation