The magnetization curves, as well as electron spin resonance and nuclear magnetic resonance spectra of 87Rb+ ions, have been measured in the quasi-two-dimensional antiferromagnet RbFe(MoO4)2 on a triangular lattice with the random modulation of the exchange bond network. Random modulation has been performed by means of the partial substitution of nonmagnetic Rb+ ions for K+ ions. It has been shown that random static disorder thus created at an impurity ion concentration of 15% drastically changes the spin structure. A noncollinear structure with significant sublattice magnetization components transverse to the magnetic field occurs in the doped compound. At the same time, the spin structure in the pure compound has the same magnetic moment, but transverse spin components disappear near a magnetic field of one third of the saturation field (three-sublattice structure with two upward sublattices and one downward sublattice). The revealed doping-induced drastic rearrangement of the spin structure of the triangular antiferromagnet has been explained by the interplay between the contribution of dynamic fluctuations, which makes maximally collinear states favorable in free energy, and the contribution from freeze-in disorder, which ensures the energy gain for the maximally noncollinear arrangement of sublattices.
This is a preview of subscription content, access via your institution.











REFERENCES
A. V. Chubukov and D. I. Golosov, J. Phys.: Condens. Matter 3, 69 (1991).
S. E. Korshunov, J. Phys. C: Solid State Phys. 19, 5927 (1986).
E. F. Shender, Sov. Phys. JETP 56, 178 (1982).
V. S. Maryasin and M. E. Zhitomirsky, Phys. Rev. Lett. 111, 247201 (2013).
L. E. Svistov, A. I. Smirnov, L. A. Prozorova, O. A. Petrenko, A. Micheler, N. Büttgen, A. Ya. Shapiro, and L. N. Demianets, Phys. Rev. B 74, 024412 (2006).
L. E. Svistov, A. I. Smirnov, L. A. Prozorova, O. A. Petrenko, L. N. Demianets, and A. Ya. Shapiro, Phys. Rev. B 67, 094434 (2003).
A. I. Smirnov, H. Yashiro, S. Kimura, M. Hagiwara, Y. Narumi, K. Kindo, A. Kikkawa, K. Katsumata, A. Ya. Shapiro, and L. N. Demianets, Phys. Rev. B 75, 134412 (2007).
A.I. Smirnov, L. E. Svistov, L. A. Prozorova, O. A. Petrenko, and M. Hagiwara, Phys. Usp. 53, 844 (2010).
M. Kenzelmann, G. Lawes, A. B. Harris, G. Gasparovic, C. Broholm, A. P. Ramirez, G. A. Jorge, M. Jaime, S. Park, Q. Huang, A. Ya. Shapiro, and L. A. Demianets, Phys. Rev. Lett. 98, 267205 (2007).
J. S.White, Ch. Niedermayer, G. Gasparovic, C. Broholm, J. M. S. Park, A. Ya. Shapiro, L. N. Demianets, and M. Kenzelmann, Phys. Rev. B 88, 060409 (2013).
L. E. Svistov, A. I. Smirnov, L. A. Prozorova, O. A. Petrenko, A. Ya. Shapiro, and L. N. Dem’yanets, JETP Lett. 80, 204 (2004).
A. I. Smirnov, L. E. Svistov, L. A. Prozorova, A. Zheludev, M. D. Lumsden, E. Ressouche, O. A. Petrenko, K. Nishikawa, S. Kimura, M. Hagiwara, K. Kindo, A. Ya. Shapiro, and L. N. Demianets, Phys. Rev. Lett. 102, 037202 (2009).
A. I. Smirnov, T. A. Soldatov, O. A. Petrenko, A. Takata, T. Kida, M. Hagiwara, M. E. Zhitomirsky, and A. Ya. Shapiro, Phys. Rev. Lett. 119, 047204 (2017).
A. I. Smirnov, T. A. Soldatov, O. A. Petrenko, A. Takata, T. Kida, M. Hagiwara, M. E. Zhitomirsky, and A. Ya. Shapiro, J. Phys.: Conf. Ser. 969, 012115 (2018).
Yu. A. Sakhratov, M. Prinz-Zwick, D. Wilson, N. Büttgen, A. Ya. Shapiro, L. E. Svistov, and A. P. Reyes, Phys. Rev. B 99, 024419 (2019).
L. E. Svistov, L. A. Prozorova, N. Büttgen, A. Ya. Shapiro, and L. N. Dem’yanets, JETP Lett. 81, 102 (2005).
A. A. Bush, N. Büttgen, A. A. Gippius, V. N. Glazkov, W. Kraetschmer, L. A. Prozorova, L. E. Svistov, A. M. Vasiliev, and A. Zheludev, Phys. Rev. B 88, 104411 (2013).
L. A. Prozorova, S. S. Sosin, L. E. Svistov, N. Büttgen, J. B. Kemper, A. P. Reyes, S. Riggs, A. Prokofiev, and O. A. Petrenko, Phys. Rev. B 91, 174410 (2015).
T. Okuda, K. Uto, S. Seki, Y. Onose, Y. Tokura, R. Kajimoto, and M. Matsuda, J. Phys. Soc. Jpn. 80, 014711 (2011).
ACKNOWLEDGMENTS
This work is a review of the results obtained in [13–15]. We are grateful to N. Büttgen, M. E. Zhitomirsky, O. A. Petrenko, A. P. Reyes, М. Hagiwara, and A. Ya. Shapiro for long-term close cooperation.
Funding
This work was supported by the Russian Science Foundation (project no. 17-12-01505, magnetization curves and electron spin resonance spectra) and by the Presidium of the Russian Academy of Sciences (NMR spectra).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
This article was prepared for the special issue dedicated to the centenary of A.S. Borovik-Romanov.
Additional information
Translated by R. Tyapaev
Rights and permissions
About this article
Cite this article
Soldatov, T.A., Sakhratov, Y.A., Svistov, L.E. et al. “Triangular Antiferromagnet” RbFe(MoO4)2 with the Replacement of Nonmagnetic Ions. J. Exp. Theor. Phys. 131, 62–70 (2020). https://doi.org/10.1134/S1063776120070122
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1063776120070122