Skip to main content
Log in

Wave Processes in Three-Dimensional Stratified Flows of a Rotating Plasma in the Boussinesq Approximation

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Magnetohydrodynamic (MHD) waves in a stratified rotating plasma in a gravitational field are investigated in the Boussinesq approximation. A theory of flows on an f-plane, on a nontraditional f-plane (with regard to the horizontal component of the Coriolis force), on a β-plane, and on a nontraditional β‑plane is developed. In each case, linear solutions to systems of three-dimensional MHD equations in the Boussinesq approximation are obtained that describe magnetic gravito-inertial waves, magnetostrophic waves, and magnetic Rossby waves. All existing types of three-wave interactions are found with the use of dispersion equations. In the case of magnetic Rossby waves in the β-plane approximation, it is shown that the low-frequency mode of a magnetic Rossby wave in the Boussinesq approximation is equivalent to that in the shallow-water MHD approximation. By the multiscale expansion method, a system of amplitude equations for interacting waves and the increments of two types of instability occurring in the system, decay and amplification, are obtained. For each type of three-wave interactions, it is shown that there is a difference in the coefficients and differential operators in the system of three-wave interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

Similar content being viewed by others

REFERENCES

  1. D. W. Hughes, R. Rosner, and N. O. Weiss, The Solar Tachocline (Cambridge Univ. Press, Cambridge, 2007).

    Book  Google Scholar 

  2. P. A. Gilman, Astrophys. J. Lett. 544, L79 (2000).

    Article  ADS  Google Scholar 

  3. M. S. Miesch and P. A. Gilman, Solar Phys. 220, 287 (2004).

    Article  ADS  Google Scholar 

  4. M. Dikpati and P. A. Gilman, Astrophys. J. 551, 536 (2001).

    Article  ADS  Google Scholar 

  5. N. A. Inogamov and R. A. Syunyaev, Astron. Lett. 36, 835 (2010).

    Article  ADS  Google Scholar 

  6. N. A. Inogamov and R. A. Sunyaev, arXiv: astro-ph/ 9904333 (1999).

  7. A. Spitkovsky, Y. Levin, and G. Ushomirsky, Astrophys. J. 566, 1018 (2002).

    Article  ADS  Google Scholar 

  8. J. Y. K. Cho, Phil. Trans. R. Soc. London, Ser. A 366, 4477 (2008).

    ADS  Google Scholar 

  9. K. V. Karelsky, A. S. Petrosyan, and S. V. Tarasevich, J. Exp. Theor. Phys. 113, 530 (2011).

    ADS  Google Scholar 

  10. K. V. Karelsky, A. S. Petrosyan, and S. V. Tarasevich, Phys. Scr. 155, 014024 (2013).

    Article  Google Scholar 

  11. K. V. Karelsky, A. S. Petrosyan, and S. V. Tarasevich, J. Exp. Theor. Phys. 119, 311 (2014).

    Article  Google Scholar 

  12. D. A. Klimachkov and A. S. Petrosyan, J. Exp. Theor. Phys. 122, 832 (2016).

    Article  ADS  Google Scholar 

  13. D. A. Klimachkov and A. S. Petrosyan, J. Exp. Theor. Phys. 125, 597 (2017).

    Article  ADS  Google Scholar 

  14. D. A. Klimachkov and A. S. Petrosyan, J. Exp. Theor. Phys. 123, 520 (2016).

    Article  ADS  Google Scholar 

  15. D. A. Klimachkov and A. S. Petrosyan, Phys. Lett. A 381, 106 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  16. T. V. Zaqarashvili, R. Oliver, and J. L. Ballester, Astrophys. J. Lett. 691, L41 (2009).

    Article  ADS  Google Scholar 

  17. K. Heng and A. Spitkovsky, Astrophys. J. 703, 1819 (2009).

    Article  ADS  Google Scholar 

  18. M. Dikpati, S. W. McIntosh, and G. Bothunet, Astrophys. J. 853, 144 (2018).

    Article  ADS  Google Scholar 

  19. X. Márquez-Artavia, C. A. Jones, and S. M. Tobias, Geophys. Astrophys. Fluid Dyn. 111, 282 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  20. T. V. Zaqarashvili, Astrophys. J. 856, 32 (2018).

    ADS  Google Scholar 

  21. T. V. Zaqarashvili, R. Oliver, J. L. Ballester, and B. M. Shergelashvili, Astron. Astrophys. 470, 815 (2007).

    ADS  Google Scholar 

  22. T. V. Zaqarashvilli, R. Oliver, J. L. Ballester, et al., Astron. Astropys. 532, A139 (2011).

    Google Scholar 

  23. V. I. Petviashvili and O. A. Pokhotelov, Solitary Waves in Plasmas and in the Atmosphere (Gordon and Breach, Reading, MA, 1992; Energoatomizdat, Moscow, 1989).

  24. G. K. Vallis, Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation (Cambridge Univ. Press, Cambridge, 2006).

    MATH  Google Scholar 

  25. V. Zeitlin, Geophysical Fluid Dynamics (Oxford Univ. Press, Oxford, 2018).

    MATH  Google Scholar 

  26. S. W. McIntosh et al., Nat. Astron. 1, 0086 (2017).

  27. T. D. Kaladze, W. Horton, L. Z. Kahlon, et al., Phys. Scr. 88, 065501 (2013).

    ADS  Google Scholar 

  28. O. G. Onishchenko, O. A. Pokhotelov, and N. M. Astafieva, Phys. Usp. 51, 577 (2008).

    Article  ADS  Google Scholar 

  29. T. V. Zaqarashvili and E. Gurgenashvili, Front. Astron. Space Sci. 6, 7 (2018).

    Article  ADS  Google Scholar 

  30. Z.-C. Liang, L. Gizon, A. C. Birch, and T. L. Duvall, Jr., Astron. Astrophys. 626, A3 (2019).

    Article  Google Scholar 

  31. J. Braithwaite and H. C. Spruit, R. Soc. Open Sci. 4, 160271 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  32. J. Philidet, C. Gissinger, F. Ligniéres, and L. Petitdemange, Geophys. Astrophys. Fluid Dynam. (in press). https://doi.org/10.1080/03091929.2019.1670827

  33. V. G. A. Böning, H. Hu, and L. Gizon, Astron. Astrophys. 629, A26 (2019).

    Article  ADS  Google Scholar 

  34. B. Loeptien, L. Gizon, A. C. Birch, et al., Nat. Astron. 2, 568 (2018).

    Article  ADS  Google Scholar 

  35. M. Dikpati, P. S. Cally, S. W. McIntosh, and E. Heifetz, Sci. Rep. 7, 14750 (2017).

    Article  ADS  Google Scholar 

  36. M. Dikpati, B. Belucz, P. A. Gilman, and S. W. McIntosh, Astrophys. J. 862, 159 (2018).

    Article  ADS  Google Scholar 

  37. J. M. Stone, J. F. Hawley, C. F. Gammie, and S. A. Balbus, Astrophys. J. 463, 656 (1996).

    Article  ADS  Google Scholar 

  38. K. Batygin, S. Stanley, and D. J. Stevenson, Astrophys. J. 776, 53 (2013).

    Article  ADS  Google Scholar 

  39. M. A. Fedotova, D. A. Klimachkov, and A. S. Petrosyan, Plasma Phys. Rep. 46, 50 (2020).

    Article  ADS  Google Scholar 

  40. B. Dintrans, M. Rieutord, and L. Valdettaro, J. Fluid Mech. 398, 271 (1999).

    ADS  MathSciNet  Google Scholar 

  41. P. Billant and J. M. Chomaz, Phys. Fluids 13, 1645 (2001).

    ADS  MathSciNet  Google Scholar 

  42. J. I. Yano, J. Fluid Mech. 810, 475 (2017).

    ADS  MathSciNet  Google Scholar 

  43. S. Lee and R. Takada, Indiana Univ. Math. J. 66, 2037 (2017).

    MathSciNet  Google Scholar 

  44. S. Takehiro, Phys. Earth Planet. Inter. 241, 37 (2015).

    ADS  Google Scholar 

  45. S. Takehiro and Y. Sasaki, Phys. Earth Planet. Inter. 276, 258 (2018).

    ADS  Google Scholar 

  46. T. Nakagawa, Phys. Earth Planet. Inter. 187, 342 (2011).

    ADS  Google Scholar 

  47. D. J. Raymond, http://kestrel.nmt.edu/raymond/ classes/ph589/notes/ssmodes/ssmodes.pdf.

  48. G. Falkovich, Fluid Mechanics: A Short Course for Physicists (Cambridge Univ. Press, Cambridge, 2011).

    MATH  Google Scholar 

  49. P. J. Dellar, J. Fluid Mech. 674, 174 (2011).

    ADS  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to D.A. Klimachkov for useful discussions.

Funding

This work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics Bazis, by the Russian Foundation for Basic Research (project no. 19-02-00016), and by the Presidium of the Russian Academy of Sciences within the Fundamental Research Program no. 28 “Space: Research of Fundamental Processes and Their Interrelations.” This work was carried out under project KP19-270 “Issues of the origin and evolution of the Universe using ground-based observation and space research methods” within a program of large-scale projects for conducting fundamental research in priority areas defined by the Presidium of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Fedotova.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedotova, M.A., Petrosyan, A.S. Wave Processes in Three-Dimensional Stratified Flows of a Rotating Plasma in the Boussinesq Approximation. J. Exp. Theor. Phys. 131, 337–355 (2020). https://doi.org/10.1134/S1063776120060035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120060035

Navigation