Skip to main content

Trojan Horse Attacks, Decoy State Method, and Side Channels of Information Leakage in Quantum Cryptography

Abstract

Early proofs of key secrecy in quantum cryptography systems were based on the assumption that the transmitting and receiving stations are completely isolated from the outside world—the eavesdropper. However, this condition cannot be implemented in practice since quantum cryptography systems are open systems in the sense that the eavesdropper may have indirect access, for example, through a fiber communication channel, to the critical elements of the equipment (phase modulators, intensity modulators, etc.) using active probing of the state of these elements. The state of the elements carries information about the transmitted key. In addition, the eavesdropper can use passive detection of side radiation from the receiving and transmitting equipment. Signals in side channels of information leakage may have extremely low intensity and are actually quantum signals. The eavesdropper may use the joint measurement of quantum information states in the communication channel and of states in various side channels of information leakage. The paper considers both passive attacks with measurement of side radiation and active attacks involving the probing of the states of the phase modulator and the intensity modulator, as well as backscattering radiation of single-photon avalanche detectors, which occurs during detecting information states on the receiver side. Combined attacks are also considered. The decoy state method is generalized with regard to active probing attacks, and boundaries for state parameters in side communication channels are obtained that guarantee secret key distribution for a given length of the communication channel.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. Note that, to obtain the limit as Q → 0 in formula (34), one should apply L’Hospital’s rule to the second order of smallness when expanding the denominator 1 – ε2 and the numerator to the second order of smallness in 1 – 2Q.

REFERENCES

  1. W. K. Wooters and W. H. Zurek, Nature (London, U. K.) 299, 802 (1982).

    ADS  Article  Google Scholar 

  2. W. Heisenberg, Zeitschr. Phys. 43, 172 (1927).

    ADS  Article  Google Scholar 

  3. H. P. Robertson, Phys. Rev. 34, 163 (1929).

    ADS  Article  Google Scholar 

  4. D. Deutsch, Phys. Rev. Lett. 50, 631 (1983).

    ADS  MathSciNet  Article  Google Scholar 

  5. H. Maassen and J. B. M. Uffink, Phys. Rev. Lett. 60, 1103 (1988).

    ADS  MathSciNet  Article  Google Scholar 

  6. K. Kraus, Phys. Rev. D 35, 3070 (1987).

    ADS  MathSciNet  Article  Google Scholar 

  7. M. Tomamichel and R. Renner, Phys. Rev. Lett. 106, 110506 (2011).

    ADS  Article  Google Scholar 

  8. C. H. Bennett and G. Brassard, in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (1984), p. 175.

  9. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Rev. Mod. Phys. 74, 145 (2002).

    ADS  Article  Google Scholar 

  10. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Duśek, N. Lütkenhaus, and M. Peev, Rev. Mod. Phys. 81, 1301 (2009).

    ADS  Article  Google Scholar 

  11. R. Renner, PhD Thesis (ETH Züurich, 2005); arXiv:0512258.

  12. J. M. Renes and J.-C. Boileau, Phys. Rev. Lett. 103, 020402 (2009).

    ADS  Article  Google Scholar 

  13. M. Tomamichel, Ch. Ci Wen Lim, N. Gisin, and R. Renner, arXiv:1103.4130v2 (2011); Nat. Commun. 3, 1 (2012).

    Article  Google Scholar 

  14. S. N. Molotkov, J. Exp. Theor. Phys. 126, 741 (2018).

    ADS  Article  Google Scholar 

  15. A. Vakhitov, V. Makarov, and D. R. Hjelme, J. Mod. Opt. 48, 2023 (2001).

    ADS  Article  Google Scholar 

  16. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, Phys. Rev. A 73, 022320 (2006).

    ADS  Article  Google Scholar 

  17. N. Jain, E. Anisimova, I. Khan, V. Makarov, Ch. Marquardt, and G. Leuchs, Talk presented at the Central European Workshop on Quantum Optics, Brussels, June 23–27, 2014.

  18. L. Lydersen, C. Wiechers, Ch. Wittmann, D. Elser, J. Skaar, and V. Makarov, Nat. Photon. 4, 686 (2011).

    ADS  Article  Google Scholar 

  19. A. Vakhitov, V. Makarov, and Dag R. Hjelme, J. Mod. Opt. 48, 2023 (2001).

    ADS  Article  Google Scholar 

  20. V. Makarov, A. Anisimov, and J. Skaar, Phys. Rev. A 74, 022313 (2006).

    ADS  Article  Google Scholar 

  21. K. A. Balygin, A. N. Klimov, I. B. Bobrov, K. S. Kravtsov, S. P. Kulik, and S. N. Molotkov, Laser Phys. Lett. 15, 095203 (2018).

    ADS  Article  Google Scholar 

  22. K. A. Balygin, A. N. Klimov, I. B. Bobrov, K. S. Kravtsov, S. P. Kulik, and S. N. Molotkov, Laser Phys. Lett. 16, 019402 (2019).

    ADS  Article  Google Scholar 

  23. Won-Young Hwang, arXiv: 0211153 [quant-ph].

  24. Xiang-Bin Wang, Phys. Rev. Lett. 94, 230503 (2005).

    ADS  Article  Google Scholar 

  25. Hoi-Kwong Lo, Xiongfeng Ma, and Kai Chen, Phys. Rev. Lett. 94, 230504 (2005);

  26. Xiongfeng Ma, Bing Qi, Yi Zhao, and Hoi-Kwong Lo, arXiv:0503005 [quant-ph].

  27. K. Tamaki, M. Curty, and M. Lucamarini, New J. Phys. 18, 065008 (2016).

    ADS  Article  Google Scholar 

  28. W. Wang, K. Tamaki, and M. Curty, New J. Phys. 20, 083027 (2018).

    ADS  Article  Google Scholar 

  29. M. Lucamarini, I. Choi, M. B. Ward, J. F. Dynes, Z. L. Yuan, and A. J. Shields, Phys. Rev. X 5, 031030 (2015); arXiv:1506.01989.

  30. S. W. Allison, G. T. Gillies, D. W. Magnuson, and T. S. Pagano, Appl. Opt. 24, 1 (1985).

    Article  Google Scholar 

  31. L. W. Tutt and T. F. Boggess, Progr. Quant. Electron. 17, 299 (1993).

    ADS  Article  Google Scholar 

  32. R. M. Wood, Laser-Induced Damage of Optical Materials (Taylor and Francis, Bristol, UK, 2003).

    Book  Google Scholar 

  33. C. E. Shannon, Bell System Techn. J. 27, 379 (1948).

    Article  Google Scholar 

  34. A. S. Holevo, Russ. Math. Surv. 53, 1295 (1998).

    Article  Google Scholar 

  35. A. S. Holevo, Quantum Systems, Channels, Information (MTsNMO, Moscow, 2010; Walter de Gruyter, Berlin, 2012).

Download references

ACKNOWLEDGMENTS

I am grateful to I.M. Arbekov, S.P. Kulik, K.A. Balygin, and A.N. Klimov for numerous interesting discussions, as well as to my colleagues from the Academy of Cryptography of the Russian Federation for discussions and support.

Funding

This work was supported by the Russian Science Foundation, project no. 16-12-00015 (continuation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Molotkov.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Molotkov, S.N. Trojan Horse Attacks, Decoy State Method, and Side Channels of Information Leakage in Quantum Cryptography. J. Exp. Theor. Phys. 130, 809–832 (2020). https://doi.org/10.1134/S1063776120050064

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120050064