Skip to main content
Log in

Effect of Crystal Field on the Electronic Structure of the Two-Band Hubbard Model with Spin Crossover

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider the change in the electronic structure of the two-band Hubbard model in the regime of strong electron correlations with spin crossover upon the passage through the crossover point depending on the crystal field growth. An abrupt semimetal–insulator–semimetal transition is detected during the passage through the spin crossover point in the absence of the spin–orbit interaction, which is accompanied by a jumpwise redistribution of the partial spectral weight between the poles of the Green function of Fermi quasiparticles. The role of the spin–orbit interaction and the change in the surface topology of surface of one-particle Green function zeros are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. F. Renz, J. Phys.: Conf. Ser. 217, 012022 (2010).

    Google Scholar 

  2. Spin Crossover in Transition Metal Compounds I–III, Ed. by P. Gütlich and H. A. Goodwin (Springer, Berlin, 2004).

    Google Scholar 

  3. Spin-Crossover Materials: Properties and Applications, Ed. by M. A. Halcrow (Wiley, Oxford, UK, 2013).

    Google Scholar 

  4. A. I. Nesterov and S. G. Ovchinnikov, JETP Lett. 90, 530 (2009).

    Article  ADS  Google Scholar 

  5. K. I. Kugel’ and D. I. Khomskii, Sov. Phys. JETP 37, 725 (1973).

  6. K. I. Kugel’ and D. I. Khomskii, Sov. Phys. Usp. 25, 231 (1982).

  7. S. V. Streltsov and D. I. Khomskii, Phys. Usp. 60, 1121 (2017).

    Article  ADS  Google Scholar 

  8. J. Kuneş, J. Phys.: Condens. Matter 27, 333201 (2015).

    ADS  Google Scholar 

  9. W. Brzezicki, J. Dziarmaga, and A. M. Oles, Phys. Rev. Lett. 109, 237201 (2012).

    Article  ADS  Google Scholar 

  10. L. V. Keldysh and Yu. V. Kopaev, Sov. Phys. Solid State 6, 2219 (1964).

    Google Scholar 

  11. M. Haverkort, Ph. D. Thesis (Univ. Köln, 2005).

  12. R. O. Zaitsev, Sov. Phys. JETP 43, 5574 (1976).

    Google Scholar 

  13. S. G. Ovchinnikov and V. V. Val’kov, Hubbard Operators in the Theory of Strongly Correlated Electrons (Imperial College Press, London, Singapore, 2004).

  14. J. S. Griffith, The Theory of Transition-Metal Ions (Cambridge Univ. Press, Cambridge, 1961).

    MATH  Google Scholar 

  15. G. E. Volovik, The Universe in a Helium Droplet (Oxford Univ. Press, New York, 2003).

    MATH  Google Scholar 

  16. Yu. S. Orlov, S. V. Nikolaev, A. I. Nesterov, and S. G. Ovchinnikov, JETP Lett. 105, 771 (2017).

    Article  ADS  Google Scholar 

  17. A. I. Nesterov, Yu. S. Orlov, S. V. Nikolaev, and S. G. Ovchinnikov, Phys. Rev. B 96, 134103 (2017).

    Article  ADS  Google Scholar 

  18. Yu. S. Orlov, S. V. Nikolaev, and S. G. Ovchinnikov, J. Exp. Theor. Phys. 129, 1062 (2019)].

    Article  ADS  Google Scholar 

  19. V. I. Kuz’min, Yu. S. Orlov, A. E. Zarubin, T. M. Ovchinnikova, and S. G. Ovchinnikov, Phys. Rev. B 100, 144429 (2019).

    Article  ADS  Google Scholar 

  20. B. A. Volkov and O. A. Pankratov, JETP Lett. 42, 178 (1985).

    ADS  Google Scholar 

  21. Y. Tanaka, Zhi Ren, T. Sato, K. Nakayama, S. Souma, T. Takahashio, K. Segawa, and Y. Ando, Nat. Phys. 8, 800 (2012).

    Article  Google Scholar 

  22. T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nat. Commun. 3, 982 (2012).

    Article  ADS  Google Scholar 

  23. O. A. Pankratov, Phys. Usp. 61, 1116 (2018).

    Article  ADS  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to S.G. Ovchinnikov for the discussion of the results of this study and valuable remarks.

Funding

This work was supported by the “BASIS” Foundation for Developing Theoretical Physics and Mathematics, the Russian Foundation for Basic Research (project no. 19-03-00017), the Krasnoyarsk Krai Administration, the Krasnoyarsk Krai Science Foundation under research project no. 18-42-243004 “New thermoelectric materials based on multiscale spatially heterogeneous substituted rare-earth cobalt oxides and Ruddlesden–Popper phases.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. S. Orlov.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, Y.S., Nikolaev, S.V. & Dudnikov, V.A. Effect of Crystal Field on the Electronic Structure of the Two-Band Hubbard Model with Spin Crossover. J. Exp. Theor. Phys. 130, 699–710 (2020). https://doi.org/10.1134/S106377612004007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612004007X

Navigation