Skip to main content
Log in

Gaseous Metal and the Problem of Vapor–Liquid (Insulator–Metal) Transition in Metal Vapors

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider the main properties of a gaseous metal, viz., the state of metal vapor adjoining the vapor–fluid transition binodal. The gaseous metal is a mixture of electron jellium and ion cores. The jellium concentration is calculated, and the region in which jellium electrons dominate over thermally ionized electrons is determined. We consider the main peculiarities and properties of the gaseous metal for conductivity as an example: the region of existence of the gaseous metal near its binodal as well as peculiarities in the behavior of conductivity on supercritical isotherms (the existence of a minimum and asymptotics). The physical meaning of the “asymptotic form” of the conductivity for increasing density is indicated as the conductivity of vapor along the binodal of the vapor–liquid coexistence binodal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Ya. B. Zel’dovich and L. D. Landau, Zh. Eksp. Teor. Fiz. 14, 32 (1944).

    Google Scholar 

  2. A. A. Likal’ter, Phys. Usp. 43, 777 (2000).

    Article  ADS  Google Scholar 

  3. G. E. Norman and A. N. Starostin, Teplofiz. Vys. Temp. 8, 413 (1970).

    Google Scholar 

  4. S. Kuhlbrodt, B. Holst, and R. Redmer, Contrib. Plasma Phys. 45, 73 (2005).

    Article  ADS  Google Scholar 

  5. Handbook of Thermodynamic and Transport Properties of Alkali Metals, Ed. by R. W. Ohse (IUPAC, 1985).

    Google Scholar 

  6. I. K. Kikoin and A. P. Senchenkov, Fiz. Met. Metalloved. 24, 843 (1967).

    Google Scholar 

  7. V. E. Fortov, A. N. Dremin, and A. A. Leont’ev, Teplofiz. Vys. Temp. 13, 1072 (1975).

    Google Scholar 

  8. D. A. Young and B. J. Alder, Phys. Rev. A 3, 364 (1971).

    Article  ADS  Google Scholar 

  9. A. W. DeSilva and A. D. Rakhel, Contrib. Plasma Phys. 45, 236 (2005).

    Article  ADS  Google Scholar 

  10. J. Clerouin, P. Noiret, V. N. Korobenko, and A. D. Rakhel, Phys. Rev. B 78, 224203 (2008).

    Article  ADS  Google Scholar 

  11. J. Clerouin, P. Noiret, P. Blottiau, et al., Phys. Plasmas 19, 082702 (2012).

    Article  ADS  Google Scholar 

  12. V. E. Fortov, V. Ya. Ternovoi, M. V. Zhernokletov, M. A. Mochalov, A. L. Mikhailov, A. S. Filimonov, A. A. Pyalling, V. B. Mintsev, V. K. Gryaznov, and I. L. Iosilevski, J. Exp. Theor. Phys. 97, 259 (2003).

    Article  ADS  Google Scholar 

  13. S. Mazevet, M. P. Desjarlais, L. A. Collins, J. D. Kress, and N. H. Magee, Phys. Rev. E 71, 016409 (2005).

    Article  ADS  Google Scholar 

  14. M. French and T. R. Mattsson, Phys. Rev. B 90, 165113 (2014).

    Article  ADS  Google Scholar 

  15. D. Li, H. Liu, S. Zeng, C. Wang, Z. Wu, P. Zhang, and J. Yan, Sci. Rep. 4, 5898 (2015).

    Article  Google Scholar 

  16. D. V. Minakov, M. A. Paramonov, and P. R. Levashov, Phys. Rev. B 97, 024205 (2018).

    Article  ADS  Google Scholar 

  17. D. V. Minakov, M. A. Paramonov, and P. R. Levashov, AIP Adv. 8, 125012 (2018).

    Article  ADS  Google Scholar 

  18. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 123, 891 (2016).

    Article  ADS  Google Scholar 

  19. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 124, 1001 (2017).

    Article  ADS  Google Scholar 

  20. M. J. Puska and R. M. Nieminen, Phys. Rev. B 43, 12221 (1991).

    Article  ADS  Google Scholar 

  21. U. Yxklinten, J. Hartford, and T. Holmquist, Phys. Scr. 55, 499 (1997).

    Article  ADS  Google Scholar 

  22. D. K. Belashchenko and O. I. Ostrovskii, Russ. J. Phys. Chem. A 80, 509 (2006).

    Article  Google Scholar 

  23. D. K. Belashchenko, Russ. J. Phys. Chem. A 82, 1138 (2008).

    Article  Google Scholar 

  24. V. S. Vorob’ev and V. G. Novikov, J. Exp. Theor. Phys. 111, 384 (2010).

    Article  ADS  Google Scholar 

  25. E. Clementi and C. Roetti, At. Data Nucl. Data Tabl. 14, 177 (1974).

    Article  ADS  Google Scholar 

  26. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 125, 1189 (2017).

    Article  ADS  Google Scholar 

  27. V. E. Fortov, A. G. Khrapak, and I. T. Yakubov, The Physics of Non-Ideal Plasma (Fizmatlit, Moscow, 2010).

    Google Scholar 

  28. Essays of the Physics and Chemistry of Low-Temperature Plasma, Ed. by L. S. Polak (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  29. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 121, 521 (2015).

    Article  ADS  Google Scholar 

  30. R. Winter, F. Hensel, T. Bodensteiner, and W. Glaser, Ber. Bunsenges. Phys. Chem. 91, 1327 (1987).

    Article  Google Scholar 

  31. F. Hensel and W. C. Pilgrim, Int. J. Mod. Phys. B 6, 3709 (1992).

    Article  ADS  Google Scholar 

  32. A. A. Borzhievskii, V. A. Sechenov, and V. I. Khorunzhenko, Teplofiz. Vys. Temp. 26, 722 (1988).

    Google Scholar 

  33. A. L. Khomkin and A. S. Shumikhin, High Temp. 51, 594 (2013).

    Article  Google Scholar 

  34. G. Franz, W. Freyland, and F. Hensel, J. Phys. Coll. C8 41, 70 (1980).

  35. A. W. DeSilva and J. D. Katsouros, J. Phys. IV 10, 209 (2000).

    Google Scholar 

  36. K. P. Migdal, V. V. Zhakhovsky, A. V. Yanilkin, et al., Appl. Surf. Sci. 478, 818 (2019).

    Article  ADS  Google Scholar 

  37. A. Kloss, T. Motzke, R. Grossjohann, and H. Hess, Phys. Rev. E 54, 5851 (1996).

    Article  ADS  Google Scholar 

  38. A. L. Khomkin and A. S. Shumikhin, Plasma Phys. Rep. 44, 958 (2018).

    Article  ADS  Google Scholar 

  39. A. L. Khomkin and A. S. Shumikhin, J. Exp. Theor. Phys. 118, 72 (2014).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the participants of the seminar at the Biberman Theoretical Department, the Joint Institute for High Temperatures, Russian Academy of Sciences for active and constructive discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Khomkin.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khomkin, A.L., Shumikhin, A.S. Gaseous Metal and the Problem of Vapor–Liquid (Insulator–Metal) Transition in Metal Vapors. J. Exp. Theor. Phys. 130, 602–609 (2020). https://doi.org/10.1134/S106377612003005X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377612003005X

Navigation