Skip to main content
Log in

Description of the Colossal Magnetoresistance of La1.2Sr1.8Mn2O7 Based on the Spin-Polaron Conduction Mechanism in the Ferromagnetic Temperature Range

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have analyzed the resistance of La1.2Sr1.8Mn2(1 – z)O7 single crystal in magnetic fields from 0 to 90 kOe in the ferromagnetic temperature range. The observed magnetoresistance of La1.2Sr1.8Mn2O7 is described based on the spin-polaron conduction mechanism. The magnetoresistance is determined by the change in the sizes and magnetic moment directions of magnetic inhomogeneities (polarons). It is shown that the colossal magnetoresistance is ensured by an increase (along the magnetic field) of the polaron linear size. It is found using the method for separating the contributions of different conduction mechanisms to the magnetoresistance that the contribution to the magnetoresistance from the orientation mechanism at 80 K in low magnetic fields is close to 50%. With increasing magnetic field, this contribution decreases and becomes small in fields exceeding 30 kOe. The comparable contributions to the conductivity from the orientational and spin-polaron mechanisms unambiguously necessitate the inclusion of both conduction mechanisms in the magnetoresistance calculations. We have calculated the temperature variation of the polaron size (in relative units) in zero magnetic field and in a magnetic field of 90 kOe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. M. N. Baibich, J. M. Broto, A. Fert, et al., Phys. Rev. Lett. 61, 2472 (1988).

    Article  ADS  Google Scholar 

  2. G. Binesch, P. Grunberg, F. Saurenbach, et al., Phys. Rev. B 39, 4828 (1989).

    Article  ADS  Google Scholar 

  3. R. von Helmholt, J. Wecker, B. Holzapfel, et al., Phys. Rev. Lett. 71, 2331 (1993).

    Article  ADS  Google Scholar 

  4. S. Jin, T. H. Tiefel, M. McCormack, et al., Science (Washington, DC, U. S.) 264, 413 (1994).

    Article  ADS  Google Scholar 

  5. J. Volger, Phys. (Amsterdam, Neth.) 20, 49 (1954).

  6. M. Zabel, J. Phys.: Condens Matter. 11, 9303 (1999).

    ADS  Google Scholar 

  7. D. T. Pierce, J. Unguris, R. J. Celotta, et al., J. Magn. Magn. Mater. 200, 290 (1999).

    Article  ADS  Google Scholar 

  8. M. I. Kurkin, E. A. Neifel’d, A. V. Korolev, N. A. Ugryumova, S. A. Gudin, and N. N. Gapontseva, Phys. Solid State 55, 974 (2013).

    Article  ADS  Google Scholar 

  9. S. A. Gudin, M. I. Kurkin, E. A. Neifel’d, A. V. Korolev, N. N. Gapontseva, and N. A. Ugryumova, J. Exp. Theor. Phys. 121, 878 (2015).

    Article  ADS  Google Scholar 

  10. E. L. Nagaev, Phys. Usp. 39, 781 (1996).

    Article  ADS  Google Scholar 

  11. Y. Tokura and Y. Tomioko, J. Magn. Magn. Mater. 200, 1 (1999).

    Article  ADS  Google Scholar 

  12. Y. Coey, M. Viret, and S. von Molnor, Adv. Phys. 48, 167 (1999).

    Article  ADS  Google Scholar 

  13. E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance (Springer, Berlin, 2002), p. 452.

    Google Scholar 

  14. M. B. Salamon and M. Jaime, Rev. Mod. Phys. 73, 583 (2001).

    Article  ADS  Google Scholar 

  15. N. G. Bebenin, R. I. Zainullina, and V. V. Ustinov, Phys. Usp. 61, 719 (2018).

    Article  ADS  Google Scholar 

  16. S. R. Broadbent and J. M. Hammersley, Proc. Cambridge Phil. Soc. 53, 629 (1957).

    Article  ADS  Google Scholar 

  17. A. L. Rakhmanov, K. I. Kugel, Ya. M. Blanter, et al., Phys. Rev. B 63, 174424 (2001).

    Article  ADS  Google Scholar 

  18. A. O. Sboychakov, A. L. Rakhmanov, K. I. Kugel’, M. Yu. Kagan, and I. V. Brodsky, J. Exp. Theor. Phys. 95, 753 (2002).

    Article  ADS  Google Scholar 

  19. K. I. Kugel’, A. L. Rakhmanov, A. O. Sboychakov, M. Yu. Kagan, I. V. Brodsky, and A. V. Klaptsov, J. Exp. Theor. Phys. 98, 572 (2004).

    Article  ADS  Google Scholar 

  20. E. L. Nagaev, Phys. Lett. A 238, 299 (1998).

    Article  ADS  Google Scholar 

  21. M. Yu. Kagan and K. I. Kugel’, Phys. Usp. 44, 553 (2001).

    Article  ADS  Google Scholar 

  22. N. Mannella, W. L. Yang, K. Tanaka, et al., Phys. Rev. B 76, 233102 (2007).

    Article  ADS  Google Scholar 

  23. A. O. Sboychakov, A. L. Rakhmanov, K. I. Kugel, et al., J. Phys.: Condens. Matter 15, 1705 (2003).

    ADS  Google Scholar 

  24. M. I. Kurkin, E. A. Neifeld, A. V. Korolev, N. A. Ugryumova, S. A. Gudin, and N. N. Gapontseva, J. Exp. Theor. Phys. 116, 823 (2013).

    Article  ADS  Google Scholar 

  25. S. A. Gudin, N. N. Gapontseva, E. A. Neifeld, A. V. Korolev, and N. A. Ugryumova, Bull. Russ. Acad. Sci.: Phys. 78, 900 (2014).

    Article  Google Scholar 

  26. S. A. Gudin, N. I. Solin, and N. N. Gapontseva, Phys. Solid State 60, 1078 (2018).

    Article  ADS  Google Scholar 

  27. N. I. Solin, J. Magn. Magn. Mater. 401, 677 (2016).

    Article  ADS  Google Scholar 

  28. M. Balbashov, S. G. Karabashev, Ya. M. Mukovskiy, et al., J. Cryst. Growth 167, 365 (1996).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank K.I. Kugel for valuable remarks made during the discussions of the results of this study.

Funding

This study was supported by the State assignment “Quantum” (no. 01201463332) of the Ministry of Education and Science of the Russian Federation and in part by the Russian Foundation for Basic Research (project no. 19-02-01000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Gudin.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gudin, S.A., Solin, N.I. Description of the Colossal Magnetoresistance of La1.2Sr1.8Mn2O7 Based on the Spin-Polaron Conduction Mechanism in the Ferromagnetic Temperature Range. J. Exp. Theor. Phys. 130, 543–548 (2020). https://doi.org/10.1134/S1063776120020120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120020120

Navigation