Skip to main content
Log in

Propagation of the 3D Crystallization Front in a Strongly Nonideal Dusty Plasma

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We have analyzed the data obtained at the PK-3 Plus Laboratory onboard the International Space Station from analysis of the crystallization front propagation in a dusty plasma. We have developed the “axial” algorithm for identifying “crystal-like” particles, which makes it possible to recognize different crystalline domains and their surface. We have proposed a method for determining the 3D front velocity, presuming the existence of a small region of the domain surface, which propagates along a certain line perpendicular to this region. It is shown that the front velocity is almost independent of time and amounts to about 60 μm/s. We have proposed a theory of the crystallization front propagation in the dust cloud under the assumption that the flux of particles being crystallized is proportional to the difference in the self-diffusion coefficients for the liquid and crystalline phases. The upper estimate of the front velocity correlates with the results of processing of experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Complex and Dusty Plasmas: From Laboratory to Space, Ed. by V. E. Fortov and G. E. Morfill, Series in Plasma Physics (CRC, Boca Raton, USA, 2010).

  2. J. H. Chu and I. Lin, Phys. Rev. Lett. 72, 4009 (1994).

    Article  ADS  Google Scholar 

  3. H. Thomas, G. E. Morfill, V. Demmel, et al., Phys. Rev. Lett. 73, 652 (1994).

    Article  ADS  Google Scholar 

  4. S. V. Vladimirov, K. Ostrikov, and A. A. Samarian, Physics and Applications of Complex Plasmas (Imperial College, London, 2005).

    Book  Google Scholar 

  5. V. Fortov, A. Ivlev, S. Khrapak, et al., Phys. Rep. 421, 1 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  6. M. Bonitz, C. Henning, and D. Block, Rep. Prog. Phys. 73, 066501 (2010).

    Article  ADS  Google Scholar 

  7. G. E. Morfill, U. Konopka, M. Kretschmer, et al., New J. Phys. 8, 7 (2006).

    Article  ADS  Google Scholar 

  8. M. Schwabe, S. K. Zhdanov, H. M. Thomas, et al., New J. Phys. 10, 033037 (2008).

    Article  ADS  Google Scholar 

  9. G. E. Morfill, H. M. Thomas, U. Konopka, et al., Phys. Rev. Lett. 83, 1598 (1999).

    Article  ADS  Google Scholar 

  10. S. A. Khrapak, B. A. Klumov, P. Huber, et al., Phys. Rev. Lett. 106, 205001 (2011).

    Article  ADS  Google Scholar 

  11. H. M. Thomas, G. E. Morfill, V. E. Fortov, et al., New J. Phys. 10, 033036 (2008).

    Article  ADS  Google Scholar 

  12. K. Jiang, V. Nosenko, Y. F. Li, et al., Europhys. Lett. 85, 45002 (2009).

    Article  ADS  Google Scholar 

  13. M. Schwabe, K. Jiang, S. Zhdanov, et al., Europhys. Lett. 96, 55001 (2011).

    Article  ADS  Google Scholar 

  14. V. N. Naumkin, A. M. Lipaev, V. I. Molotkov, et al., J. Phys.: Conf. Ser. 946, 012144 (2018).

    Google Scholar 

  15. M. Rubin-Zuzic, G. E. Morfill, A. V. Ivlev, et al., Nat. Phys. 2, 181 (2006).

    Article  Google Scholar 

  16. U. Gasser, E. R. Weeks, A. Schofield, et al., Science (Washington, DC, U. S.) 292, 258 (2001).

    Article  ADS  Google Scholar 

  17. U. Gasser, J. Phys.: Condens. Matter 21, 203101 (2009).

    ADS  Google Scholar 

  18. A. G. Khrapak, V. I. Molotkov, A. M. Lipaev, et al., Contrib. Plasma Phys. 56, 253 (2016).

    Article  ADS  Google Scholar 

  19. V. N. Naumkin, D. I. Zhukhovitskii, V. I. Molotkov, et al., Phys. Rev. E 94, 033204 (2016).

    Article  ADS  Google Scholar 

  20. D. I. Zhukhovitskii, V. N. Naumkin, V. I. Molotkov, et al., Plasma Sources Sci. Technol. 28, 065014 (2019).

    Article  ADS  Google Scholar 

  21. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).

    Article  ADS  Google Scholar 

  22. P. R. ten Wolde, M. J. Ruiz Montero, and D. Frenkel, J. Chem. Phys. 104, 9932 (1996).

    Article  ADS  Google Scholar 

  23. J. A. van Meel, L. Filion, C. Valeriani, et al., J. Chem. Phys. 136, 234107 (2012).

    Article  ADS  Google Scholar 

  24. D. I. Zhukhovitskii, J. Chem. Phys. 125, 234701 (2006).

    Article  ADS  Google Scholar 

  25. D. I. Zhukhovitskii, V. N. Naumkin, A. I. Khusnulgatin, et al., Phys. Rev. E 96, 043204 (2017).

    Article  ADS  Google Scholar 

  26. O. S. Vaulina and S. V. Vladimirov, Phys. Plasmas 9, 835 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Zhukhovitskii.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukhovitskii, D.I., Naumkin, V.N., Khusnulgatin, A.I. et al. Propagation of the 3D Crystallization Front in a Strongly Nonideal Dusty Plasma. J. Exp. Theor. Phys. 130, 616–625 (2020). https://doi.org/10.1134/S1063776120020090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120020090

Navigation