Skip to main content
Log in

Observation of the Dipole Blockade Effect in Detecting Rydberg Atoms by the Selective Field Ionization Method

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The dipole blockade effect at laser excitation of mesoscopic ensembles of Rydberg atoms lies in the fact that the excitation of one atom to a Rydberg state blocks the excitation of other atoms due to the shift in the collective energy levels of interacting Rydberg atoms. It is used to obtain the entangled qubit states based on single neutral atoms in optical traps. In this paper, we present our experimental results on the observation of the dipole blockade for mesoscopic ensembles of 1–5 atoms when they are detected by the selective field ionization method. We have investigated the spectra of the three-photon laser excitation 5S1/2 → 5P3/2 → 6S1/2nP3/2 of cold Rydberg Rb atoms in a magneto-optical trap. We have found that for mesoscopic ensembles this method allows only a partial dipole blockage to be observed. This is most likely related to the presence of parasitic electric fields reducing the interaction energy of Rydberg atoms, the decrease in the probability of detecting high states, and the strong angular dependence of the interaction energy of Rydberg atoms in a single interaction volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. T. F. Gallagher, Rydberg Atoms (Cambridge Univ. Press, Cambridge, 1994).

    Book  Google Scholar 

  2. M. Saffman, T. G. Walker, and K. Molmer, Rev. Mod. Phys. 82, 2313 (2010).

    Article  ADS  Google Scholar 

  3. I. I. Ryabtsev, I. I. Beterov, D. B. Tretyakov, V. M. Entin, and E. A. Yakshina, Phys. Usp. 59, 196 (2016).

    Article  ADS  Google Scholar 

  4. M. Saffman, J. Phys. B 49, 202001 (2016).

    Article  ADS  Google Scholar 

  5. D. Jaksh, J. I. Cirac, P. Zoller, S. L. Rolston, R. Cote, and M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).

    Article  ADS  Google Scholar 

  6. M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901 (2001).

    Article  ADS  Google Scholar 

  7. D. Comparat and P. Pillet, J. Opt. Soc. Am. B 27, A208 (2010).

    Article  ADS  Google Scholar 

  8. D. Tong, S. M. Farooqi, J. Stanojevic, S. Krishnan, Y. P. Zhang, R. Côté, E. E. Eyler, and P. L. Gould, Phys. Rev. Lett. 93, 063001 (2004).

    Article  ADS  Google Scholar 

  9. K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemüller, Phys. Rev. Lett. 93, 163001 (2004).

    Article  ADS  Google Scholar 

  10. T. Cubel Liebisch, A. Reinhard, P. R. Berman, and G. Raithel, Phys. Rev. Lett. 95, 253002 (2005).

    Article  ADS  Google Scholar 

  11. T. Vogt, M. Viteau, J. Zhao, A. Chotia, D. Comparat, and P. Pillet, Phys. Rev. Lett. 97, 083003 (2006).

    Article  ADS  Google Scholar 

  12. T. Vogt, M. Viteau, A. Chotia, J. Zhao, D. Comparat, and P. Pillet, Phys. Rev. Lett. 99, 073002 (2007).

    Article  ADS  Google Scholar 

  13. R. Heidemann, U. Raitzsch, V. Bendkowsky, B. Butscher, R. Löw, L. Santos, and T. Pfau, Phys. Rev. Lett. 99, 163601 (2007).

    Article  ADS  Google Scholar 

  14. T. Wilk, A. Gaetan, C. Evellin, J. Wolters, Y. Miroshnichenko, P. Grangier, and A. Browayes, Phys. Rev. Lett. 104, 010502 (2010).

    Article  ADS  Google Scholar 

  15. L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, Phys. Rev. Lett. 104, 010503 (2010).

    Article  ADS  Google Scholar 

  16. M. Viteau, P. Huillery, M. G. Bason, N. Malossi, D. Ciampini, O. Morsch, E. Arimondo, D. Comparat, and P. Pillet, Phys. Rev. Lett. 109, 053002 (2012).

    Article  ADS  Google Scholar 

  17. A. Schwarzkopf, R. E. Sapiro, and G. Raithel, Phys. Rev. Lett. 107, 103001 (2011).

    Article  ADS  Google Scholar 

  18. A. M. Hankin, Y.-Y. Jau, L. P. Parazzoli, C. W. Chou, D. J. Armstrong, A. J. Landahl, and G. W. Biedermann, Phys. Rev. A 89, 033416 (2014).

    Article  ADS  Google Scholar 

  19. D. Barredo, S. Ravets, H. Labuhn, L. Béguin, A. Vernier, F. Nogrette, T. Lahaye, and A. Browaeys, Phys. Rev. Lett. 112, 183002 (2014).

    Article  ADS  Google Scholar 

  20. M. Ebert, M. Kwon, T. G. Walker, and M. Saffman, Phys. Rev. Lett. 115, 093601 (2015).

    Article  ADS  Google Scholar 

  21. Y.-Y. Jau, A. M. Hankin, T. Keating, I. H. Deutsch, and G. W. Biedermann, Nat. Phys. 12, 71 (2016).

    Article  Google Scholar 

  22. Y. Zeng, P. Xu, X. He, Y. Liu, M. Liu, J. Wang, D. J. Papoular, G. V. Shlyapnikov, and M. Zhan, Phys. Rev. Lett. 119, 160502 (2017).

    Article  ADS  Google Scholar 

  23. Y. O. Dudin, L. Li, F. Bariani, and A. Kuzmich, Nat. Phys. 8, 790 (2012).

    Article  Google Scholar 

  24. Y. O. Dudin and A. Kuzmich, Science (Washington, DC, U. S.) 336, 887 (2012).

    Article  ADS  Google Scholar 

  25. I. I. Ryabtsev, D. B. Tretyakov, I. I. Beterov, and V. M. Entin, Phys. Rev. A 76, 012722 (2007);

    Article  ADS  Google Scholar 

  26. Phys. Rev. A 76, 049902(E) (2007).

  27. I. I. Ryabtsev, D. B. Tretyakov, I. I. Beterov, and V. M. Entin, Phys. Rev. Lett. 104, 073003 (2010).

    Article  ADS  Google Scholar 

  28. D. B. Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Beterov, C. Andreeva, and I. I. Ryabtsev, Phys. Rev. A 90, 041403(R) (2014).

  29. E. A. Yakshina, D. B. Tretyakov, I. I. Beterov, V. M. Entin, C. Andreeva, A. Cinins, A. Markovski, Z. Iftikhar, A. Ekers, and I. I. Ryabtsev, Phys. Rev. A 94, 043417 (2016).

    Article  ADS  Google Scholar 

  30. D. B. Tretyakov, I. I. Beterov, E. A. Yakshina, V. M. Entin, I. I. Ryabtsev, P. Cheinet, and P. Pillet, Phys. Rev. Lett. 119, 173402 (2017).

    Article  ADS  Google Scholar 

  31. E. A. Yakshina, D. B. Tretyakov, V. M. Entin, I. I. Beterov, and I. I. Ryabtsev, Quantum Electron. 48, 886 (2018).

    Article  ADS  Google Scholar 

  32. I. I. Ryabtsev, I. I. Beterov, D. B. Tretyakov, E. A. Yakshina, and V. M. Entin, Quantum Electron. 49, 455 (2019).

    Article  ADS  Google Scholar 

  33. A. A. Kamenski, N. L. Manakov, S. N. Mokhnenko, and V. D. Ovsiannikov, Phys. Rev. A 96, 032716 (2017).

    Article  ADS  Google Scholar 

  34. L. Zimmerman, M. G. Littman, M. M. Kash, and D. Kleppner, Phys. Rev. A 20, 2251 (1979).

    Article  ADS  Google Scholar 

  35. D. B. Tretyakov, I. I. Beterov, V. M. Entin, I. I. Ryabtsev, and P. L. Chapovsky, J. Exp. Theor. Phys. 108, 374 (2009).

    Article  ADS  Google Scholar 

  36. V. A. Rykov, P. P. D’yachenko, and A. A. Koshelev, Sov. At. Energy 63, 539 (1987).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 19-52-15010 with regard to the theoretical analysis of Förster resonances and project no. 17-02-00987 with regard to the applications in quantum informatics), the Russian Science Foundation (project no. 18-12-00313 with regard to the dipole blockade theory), the Advanced Research Foundation (with regard to the experiment and analysis of its results), and the Novosibirsk State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Ryabtsev.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakshina, E.A., Tretyakov, D.B., Entin, V.M. et al. Observation of the Dipole Blockade Effect in Detecting Rydberg Atoms by the Selective Field Ionization Method. J. Exp. Theor. Phys. 130, 170–182 (2020). https://doi.org/10.1134/S1063776120010215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120010215

Navigation