Skip to main content
Log in

A Nonlinear Electric Model of the Transient Photoelectric Current in an Organic Photodiode

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

One of the possible causes of the degradation of organic photodiodes is explained in terms of a nonlinear resistance–capacitance model. Electronic switches for switching photodiode parameters when light is turned on and off are used as nonlinear elements in the equivalent circuit. The model treats the photodiode as a spatially localized photovoltage generator loaded on a passive four-terminal device connected with the electrodes through passive interface layers. The presence of passive layers that have areas with oppositely directed built-in pulling electric fields is the main cause of the degradation of photodiode characteristics. The proposed equivalent circuit well reproduces the experimental transient and steady-state processes in organic photodiodes and can be useful both for measuring the electrical parameters of photodiodes and for studying the processes leading to their degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Y. Huang, E. J. Kramer, A. J. Heeger, and G. C. Bazan, Chem. Rev. 114, 7006 (2014).

    Article  Google Scholar 

  2. W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganäs, F. Gao, and J. Hou, Adv. Mater. 28, 4734 (2016).

    Article  Google Scholar 

  3. S. Zhang, L. Ye, and J. Hou, Adv. Energy Mater. 6, 1502529 (2016).

    Article  Google Scholar 

  4. Q. Wan, X. Guo, Z. Wang, W. Li, B. Guo, W. Ma, and Y. Li, Adv. Funct. Mater. 26, 6635 (2016).

    Article  Google Scholar 

  5. S. Li, L. Ye, W. Zhao, H. Yan, B. Yang, D. Liu, and J. Hou, J. Am. Chem. Soc. 140, 7159 (2018).

    Article  Google Scholar 

  6. J. Yuan, Yu. Zhang, L. Zhou, J. Ulanski, Yo. Li, and Y. Zou, Joule 3, 17 (2019).

    Google Scholar 

  7. F. Ali, A. Sharma, J. P. Tiwari, and S. Chand, AIP Adv. 5, 027108 (2015).

    Article  ADS  Google Scholar 

  8. X. Hu, L. Iwasaki, A. Suizu, R. Yoshikawa, H. Awaga, and K. Ito, Chem. Phys. Lett. 484, 177 (2010).

    Article  ADS  Google Scholar 

  9. S. Dalgleish, M. M. Matsushita, L. Hu, B. Li, H. Yoshikawa, and K. Awaga, J. Am. Chem. Soc. 134, 12742 (2012).

    Article  Google Scholar 

  10. P. Peumans and S. R. Forrest, Appl. Phys. Lett. 79, 126 (2001).

    Article  ADS  Google Scholar 

  11. P. Peumans and S. R. Forrest, Appl. Phys. Lett. 80, 338 (2002).

    Article  ADS  Google Scholar 

  12. L. Xu, Y.-J. Lee, and J. W. P. Hsu, Appl. Phys. Lett. 105, 123904 (2014).

    Article  ADS  Google Scholar 

  13. L. Tzabari and N. Tessler, J. Appl. Phys. 109, 064501 (2011).

    Article  ADS  Google Scholar 

  14. V. A. Trukhanov, JETP Lett. 109, 776 (2019).

    Article  ADS  Google Scholar 

  15. N. V. Usol’tseva, A. I. Smirnova, A. V. Kazak, N. I. Giricheva, N. E. Galanin, G. P. Shaposhnikov, V. V. Bodnarchuk, and S. V. Yablonskii, Opto-Electron. Rev. 25, 127 (2017).

    Article  ADS  Google Scholar 

  16. A. V. Kazak, N. V. Usol’tseva, A. I. Smirnova, V. V. Bodnarchuk, S. N. Sul’yanov, and S. V. Yablonskii, Crystallogr. Rep. 61, 493 (2016).

    Article  ADS  Google Scholar 

  17. N. V. Usol’tseva, A. I. Smirnova, A. V. Kazak, M. I. Kovaleva, N. E. Galanin, G. P. Shaposhnikov, V. V. Bodnarchuk, and S. V. Yablonskii, Zhidk. Krist. Prakt. Ispol’z. 15 (4), 56 (2015).

    Google Scholar 

  18. A. A. Barybin and V. I. Shapovalov, Phys. Solid State 50, 815 (2008).

    Article  ADS  Google Scholar 

  19. K. Kawano and C. Adachi, Adv. Funct. Mater. 19, 3934 (2009).

    Article  Google Scholar 

  20. A. R. von Hippel, Dielectrics and Waves (Artech House, Boston, 1995).

    Google Scholar 

  21. S. P. Palto, A. V. Alpatova, A. R. Geivandov, L. M. Blinov, V. V. Lazarev, and S. G. Yudin, Opt. Spectrosc. 124, 206 (2018).

    Article  Google Scholar 

  22. B. Chen, X. Qiao, C.-M. Liu, C. Zhao, H.-C. Chen, K.-H. Wei, and B. Hu, Appl. Phys. Lett. 102, 193302 (2013).

    Article  ADS  Google Scholar 

  23. W. Känzig, Phys. Rev. 98, 549 (1955).

    Article  ADS  Google Scholar 

  24. P. V. Ionov, Sov. Phys. Solid State 15, 1888 (1973).

    Google Scholar 

  25. T. Mizutani, Y. Takai, and M. Ieda, Jpn. J. Appl. Phys. 12, 1553 (1973).

    Article  ADS  Google Scholar 

  26. K. Tahira and K. C. Kao, J. Phys. D 18, 2247 (1985).

    Article  ADS  Google Scholar 

  27. M. Pope and Ch. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford Univ. Press, New York, 1999), Vol. 2.

    Google Scholar 

  28. A. Kumar, S. Goel, and D. S. Misra, Phys. Rev. B 35, 5635 (1987).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to V.E. Shubin for the useful discussions of our results.

Funding

This work was supported by the Ministry of Science and Higher Education within the State contract of the “Crystallography and Photonics” Federal Research Center of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Yablonskii or V. V. Bodnarchuk.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yablonskii, S.V., Bodnarchuk, V.V. & Yudin, S.G. A Nonlinear Electric Model of the Transient Photoelectric Current in an Organic Photodiode. J. Exp. Theor. Phys. 130, 446–451 (2020). https://doi.org/10.1134/S1063776120010203

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120010203

Navigation