Skip to main content
Log in

Aluminum–Carbon Interaction at the Aluminum–Graphene and Aluminum–Graphite Interfaces

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The interaction of liquid and solid aluminum with the graphene and graphite surfaces is studied using the density functional theory and a molecular dynamics simulation. The Morse potential is parameterized using the results of ab initio calculations in order to describe the interaction between aluminum and carbon atoms. This potential is used to investigate the interaction of a molten aluminum drop with the (0001) graphite surface theoretically. The properties of the free aluminum melt surface and the contact surface formed upon wetting graphite by the molten drop are calculated. The calculation results agree well with the available experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. R. Bakshi, D. Lahiri, and A. Agarwal, Int. Mater. Rev. 55, 41 (2010).

    Article  Google Scholar 

  2. H. G. P. Kumar and M. A. Xavior, Proc. Eng. 97, 10331 (2014).

    Google Scholar 

  3. S. C. Tjong, Mater. Sci. Eng. Rep. 74, 281 (2013).

    Article  Google Scholar 

  4. N. Saheb, Z. Iqbal, A. Khalil, et al., J. Nanomater. 2012, 983470 (2012).

    Article  Google Scholar 

  5. H. J. Choi, G. B. Kwon, G. Y. Lee, et al., Scr. Mater. 59, 360 (2008).

    Article  Google Scholar 

  6. S. R. Bakshi and A. Agarwal, Carbon 49, 533 (2011).

    Article  Google Scholar 

  7. I. A. Evdokimov, S. A. Perfilov, A. A. Pozdnyakov, et al., Inorg. Mater. Appl. Res. 9, 472 (2018).

    Article  Google Scholar 

  8. I. A. Evdokimov, T. A. Chernyshova, G. I. Pivovarov, et al., Inorg. Mater. Appl. Res. 5, 255 (2014).

    Article  Google Scholar 

  9. K. V. Kremlev, A. M. Ob’edkov, N. M. Semenov, B. S. Kaverin, S. Yu. Ketkov, S. A. Gusev, P. A. Yunin, A. I. Elkin, and A. V. Aborkin, Tech. Phys. Lett. 44, 865 (2018).

    Article  ADS  Google Scholar 

  10. A. V. Aborkin, K. V. Kremlev, A. M. Obiedkov, et al., J. Phys.: Conf. Ser. 1164, 012020 (2019).

    Google Scholar 

  11. J. Nie, C. Jia, N. Shi, et al., Int. J. Miner. Metall. Mater. 18, 695 (2011).

    Article  Google Scholar 

  12. K. P. So, I. H. Lee, D. L. Duong, et al., Acta Mater. 59, 3313 (2011).

    Article  Google Scholar 

  13. J. Wang, Z. Li, G. Fan, et al., Scr. Mater. 66, 594 (2012).

    Article  Google Scholar 

  14. S. W. Ip, R. Sridhar, J. M. Toguri, et al., Mater. Sci. Eng. A 244, 31 (1998).

    Article  Google Scholar 

  15. J. G. Park, D. H. Keum, and Y. H. Lee, Carbon 95, 690 (2015).

    Article  Google Scholar 

  16. W. Zhou, T. Yamaguchi, K. Kikuchi, et al., Acta Mater. 125, 369 (2017).

    Article  Google Scholar 

  17. K. Landry, S. Kalogeropoulou, and N. Eustathopoulos, Mater. Sci. Eng. A 254, 99 (1998).

    Article  Google Scholar 

  18. S.-I. Oh, J.-Y. Lim, Y.-C. Kim, et al., J. Alloys Compd. 542, 111 (2012).

    Article  Google Scholar 

  19. K. Landry, S. Kalogeropoulou, N. Eustathopoulos, et al., Scr. Mater. 34, 841 (1996).

    Article  Google Scholar 

  20. W. R. Tyson and W. A. Miller, Surf. Sci. 62, 267 (1977).

    Article  ADS  Google Scholar 

  21. C. Garcia-Cordovilla, E. Louis, and A. Pamies, J. Mater. Sci. 21, 2787 (1986).

    Article  ADS  Google Scholar 

  22. Kh. Kh. Kalazhokov, Z. Kh. Kalazhokov, and Kh. B. Khokonov, Tech. Phys. 48, 272 (2003).

    Article  Google Scholar 

  23. J. M. Molina, R. Voytovych, E. Louis, et al., Int. J. Adhes. Adhesiv. 27, 394 (2007).

    Article  Google Scholar 

  24. I. F. Bainbridge and J. A. Taylor, Metall. Mat. Trans. A 44, 3901 (2013).

    Article  Google Scholar 

  25. E. B. Webb and G. S. Grest, Phys. Rev. Lett. 86, 2066 (2001).

    Article  ADS  Google Scholar 

  26. K. K. Nanda, Phys. Lett. A 376, 1647 (2012).

    Article  ADS  Google Scholar 

  27. B. Dayal, Nature (London, U.K.) 169, 1010 (1952).

    Article  ADS  Google Scholar 

  28. Y. Qi, L. G. Hector, N. Ooi, et al., Surf. Sci. 581, 155 (2005).

    Article  ADS  Google Scholar 

  29. W. Lee, S. Jang, M. J. Kim, et al., Nanotechnology 19, 285701 (2008).

    Article  Google Scholar 

  30. D.-H. Lim, A. S. Negreira, and J. Wilcox, J. Phys. Chem. C 115, 8961 (2011).

    Article  Google Scholar 

  31. I. Garg, H. Sharma, K. Dharamvir, et al., J. Phys. Chem. C 114, 18762 (2010).

    Article  Google Scholar 

  32. I. Moullet, Surf. Sci. 331333, 697 (1995).

  33. A. Ishii, M. Yamamoto, H. Asano, et al., J. Phys.: Conf. Ser. 100, 052087 (2008).

    Google Scholar 

  34. M. T. Baei, Fullerenes, Nanotubes Carbon Nanostruct. 20, 681 (2012).

    Article  ADS  Google Scholar 

  35. M. Hamadanian and F. K. Fotooh, Comput. Mater. Sci. 82, 497 (2014).

    Article  Google Scholar 

  36. D. M. Park, J. H. Kim, S. J. Lee, et al., J. Mech. Sci. Technol. 32, 5845 (2018).

    Article  Google Scholar 

  37. A. Mokhalingam, D. Kumar, and A. Srivastava, Mater. Today: Proc. 4 (2A), 3952 (2017).

    Google Scholar 

  38. B. K. Choi, G. H. Yoon, and S. Lee, Composites B 91, 119 (2016).

  39. N. Silvestre, B. Faria, and J. N. Canongia Lopes, Compos. Sci. Technol. 90, 16 (2014).

    Article  Google Scholar 

  40. S. Xiao and W. Hou, Int. J. Multiscale Comput. Eng. 5, 447 (2007).

    Article  Google Scholar 

  41. H.-Y. Song and X.-W. Zha, Comput. Mater. Sci. 49, 899 (2010).

    Article  Google Scholar 

  42. J. Xiang, L. Xie, S. A. Meguid, et al., Comput. Mater. Sci. 128, 359 (2017).

    Article  Google Scholar 

  43. D. Boda and D. Henderson, Mol. Phys. 106, 2367 (2008).

    Article  ADS  Google Scholar 

  44. M. Rouha and I. Nezbeda, Fluid Phase Equil. 277, 42 (2009).

    Article  Google Scholar 

  45. J. Delhommelle and P. Millié, Mol. Phys. 99, 619 (2001).

    Article  ADS  Google Scholar 

  46. C. R. Dandekar and Y. C. Shin, Composites A 42, 355 (2011).

  47. H. Zhao and N. Chen, Inverse Probl. 24, 035019 (2008).

    Article  ADS  Google Scholar 

  48. H. W. Sheng, M. J. Kramer, A. Cadien, et al., Phys. Rev. B 83, 134118 (2011).

    Article  ADS  Google Scholar 

  49. J. Tersoff, Phys. Rev. B 39, 5566 (1989).

    Article  ADS  Google Scholar 

  50. J. Vande Vondele, M. Krack, F. Mohamed, et al., Comput. Phys. Commun. 167, 103 (2005).

    Article  ADS  Google Scholar 

  51. J. Hutter, M. Iannuzzi, F. Schiffmann, et al., Comput. Mol. Sci. 4, 15 (2014).

    Article  Google Scholar 

  52. B. G. Lippert, J. Hutter, and M. Parrinello, Mol. Phys. 92, 477 (1997).

    Article  ADS  Google Scholar 

  53. J. VandeVondele and J. Hutter, J. Chem. Phys. 127, 114105 (2007).

    Article  ADS  Google Scholar 

  54. S. Goedecker, M. Teter, and J. Hutter, Phys. Rev. B 54, 1703 (1996).

    Article  ADS  Google Scholar 

  55. C. Hartwigsen, S. Goedecker, and J. Hutter, Phys. Rev. B 58, 3641 (1998).

    Article  ADS  Google Scholar 

  56. M. Krack, Theor. Chem. Accounts 114, 145 (2005).

    Article  Google Scholar 

  57. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  58. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  59. S. Grimme, J. Antony, S. Ehrlich, et al., J. Chem. Phys. 132, 154104 (2010).

    Article  ADS  Google Scholar 

  60. R. W. G. Wyckoff, Crystal Structures (Interscience, New York, 1963), Vol. 1.

    MATH  Google Scholar 

  61. R. Gaudoin and W. M. C. Foulkes, Phys. Rev. B 66, 052104 (2002).

    Article  ADS  Google Scholar 

  62. O. L. Blakslee, D. G. Proctor, E. J. Seldin, et al., J. Appl. Phys. 41, 3373 (1970).

    Article  ADS  Google Scholar 

  63. E. J. Seldin and C. W. Nezbeda, J. Appl. Phys. 41, 3389 (1970).

    Article  ADS  Google Scholar 

  64. R. Nicklow, N. Wakabayashi, and H. G. Smith, Phys. Rev. B 5, 4951 (1972).

    Article  ADS  Google Scholar 

  65. A. Bosak, M. Krisch, M. Mohr, et al., Phys. Rev. B 75, 153408 (2007).

    Article  ADS  Google Scholar 

  66. P. M. Sutton, Phys. Rev. 91, 816 (1953).

    Article  ADS  Google Scholar 

  67. J. Vallin, M. Mongy, K. Salama, et al., J. Appl. Phys. 35, 1825 (1964).

    Article  ADS  Google Scholar 

  68. J. F. Thomas, Phys. Rev. 175, 955 (1968).

    Article  ADS  Google Scholar 

  69. L. Gerward, J. Phys. Chem. Sol. 46, 925 (1985).

    Article  ADS  Google Scholar 

  70. I. V. Lebedeva, A. S. Minkin, A. M. Popov, et al., Phys. E (Amsterdam, Neth.) 108, 326 (2019).

  71. N. Mounet and N. Marzari, Phys. Rev. B 71, 205214 (2005).

    Article  ADS  Google Scholar 

  72. R. Gaudoin, W. M. C. Foulkes, and G. Rajagopal, J. Phys.: Condens. Matter 14, 8787 (2002).

    ADS  Google Scholar 

  73. P. Jacobs, Y. F. Zhukovskii, Y. Mastrikov, et al., Comput. Model. New Technol. 6 (1), 7 (2002).

    Google Scholar 

  74. N. E. Singh-Miller and N. Marzari, Phys. Rev. B 80, 235407 (2009).

    Article  ADS  Google Scholar 

  75. K. H. Michel and B. Verberck, Phys. Status Solidi B 245, 2177 (2008).

    Article  ADS  Google Scholar 

  76. C. Woodward, D. R. Trinkle, L. G. Hector, et al., Phys. Rev. Lett. 100, 045507 (2008).

    Article  ADS  Google Scholar 

  77. Y. Qi and L. G. Hector, Phys. Rev. B 69, 235401 (2004).

    Article  ADS  Google Scholar 

  78. W. Li and T. Wang, J. Phys.: Condens. Matter 10, 9889 (1998).

    ADS  Google Scholar 

  79. J. Schöchlin, K. P. Bohnen, and K. M. Ho, Surf. Sci. 324, 113 (1995).

    Article  ADS  Google Scholar 

  80. C. Fiolhais, L. M. Almeida, and C. Henriques, Prog. Surf. Sci. 74, 209 (2003).

    Article  ADS  Google Scholar 

  81. R. Ludeke and G. Landgren, Phys. Rev. Lett. 47, 875 (1981).

    Article  ADS  Google Scholar 

  82. W. Shinoda, M. Shiga, and M. Mikami, Phys. Rev. B 69, 134103 (2004).

    Article  ADS  Google Scholar 

  83. J. Lao, T. M. Naghdi, D. Pinisetty, et al., J. Mater. 65, 175 (2013).

    Google Scholar 

  84. P. Brommer, A. Kiselev, D. Schopf, et al., Modell. Simul. Mater. Sci. Eng. 23, 074002 (2015).

    Article  ADS  Google Scholar 

  85. M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Article  ADS  Google Scholar 

  86. J. Tersoff, Phys. Rev. B 37, 6991 (1988).

    Article  ADS  Google Scholar 

  87. P. M. Morse, Phys. Rev. 34, 57 (1929).

    Article  ADS  Google Scholar 

  88. R. C. Lincoln, K. M. Koliwad, and P. B. Ghate, Phys. Rev. 157, 463 (1967).

    Article  ADS  Google Scholar 

  89. L. A. Girifalco and V. G. Weizer, Phys. Rev. 114, 687 (1959).

    Article  ADS  Google Scholar 

  90. T. H. K. Barron and C. Domb, Proc. R. Soc. London, Part A 227, 447 (1955).

  91. D. Weaire, M. F. Ashby, J. Logan, et al., Acta Metall. 19, 779 (1971).

    Article  Google Scholar 

  92. M. Doyama and J. S. Koehler, Acta Metall. 24, 871 (1976).

    Article  Google Scholar 

  93. D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Elsevier, Amsterdam, 2001).

    MATH  Google Scholar 

  94. R. Balesku, Equilibrium and Nonequilibrium Statistical Mechanics (Wiley, New York, 1978; Mir, Moscow, 1978), Vol. 1.

  95. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. B 28, 784 (1983).

    Article  ADS  Google Scholar 

  96. W. Mickel, S. C. Kapfer, G. E. Schröder-Turk, et al., J. Chem. Phys. 138, 044501 (2013).

    Article  ADS  Google Scholar 

  97. S. Ono and S. Kondo, Molecular Theory of Surface Tension in Liquids (Springer, Berlin, 1960; Ripol Klassik, Moscow, 2013).

  98. J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Courier Corp., 2013).

    Google Scholar 

  99. E. Salomons and M. Mareschal, J. Phys.: Condens. Matter 3, 3645 (1991).

    ADS  Google Scholar 

  100. A. P. Thompson, S. J. Plimpton, and W. Mattson, J. Chem. Phys. 131, 154107 (2009).

    Article  ADS  Google Scholar 

  101. W. Wang, S. Dai, X. Li, et al., Nat. Commun. 6, 7853 (2015).

    Article  ADS  Google Scholar 

  102. D. C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge Univ. Press, Cambridge, 2004).

    Book  MATH  Google Scholar 

  103. M. I. Mendelev, M. J. Kramer, C. A. Becker, et al., Philos. Mag. 88, 1723 (2008).

    Article  ADS  Google Scholar 

  104. D. K. Belashchenko, Phys. Usp. 56, 1176 (2013).

    Article  ADS  Google Scholar 

  105. G. E. Totten and D. S. MacKenzie, Handbook of Aluminum (CRC, Boca Raton, USA, 2003), Vol. 1.

    Book  Google Scholar 

  106. D. K. Belashchenko, A. V. Vorotyagin, and B. R. Gelchinsky, High Temp. 49, 656 (2011).

    Article  Google Scholar 

  107. J. E. Hatch, Aluminum: Properties and Physical Metallurgy (ASM Int., 1984).

    Google Scholar 

  108. M. L. Schlossman, Curr. Opin. Colloid Interface Sci. 7, 235 (2002).

    Article  Google Scholar 

  109. S. J. Roser, R. Felici, and A. Eaglesham, Langmuir 10, 3853 (1994).

    Article  Google Scholar 

  110. J. Lekner, Theory of Reflection: Reflection and Transmission of Electromagnetic, Particle and Acoustic Waves (Springer, Berlin, 2016).

    Book  MATH  Google Scholar 

  111. A. Voter, S. Chen, R. Siegel, et al., in Proceedings of the MRS Symposia (Mater. Res. Soc., Pittsburgh, PA, 1987), p. 175.

  112. Y. Mishin, D. Farkas, M. J. Mehl, et al., Phys. Rev. B 59, 3393 (1999).

    Article  ADS  Google Scholar 

  113. A. V. Aborkin, K. S. Khor’kov, A. M. Ob’edkov, K. V. Kremlev, A. Yu. Izobello, A. T. Volochko, and M. I. Alymov, Tech. Phys. Lett. 45, 20 (2019).

    Article  ADS  Google Scholar 

  114. B. Chen, J. Shen, X. Ye, et al., Carbon 114, 198 (2017).

    Article  Google Scholar 

  115. M. H. Vidal-Sétif, M. Lancin, C. Marhic, et al., Mater. Sci. Eng. A 272, 321 (1999).

    Article  Google Scholar 

  116. D. Poirier, R. Gauvin, and R. A. L. Drew, Composites A 40, 1482 (2009).

  117. I. A. Evdokimov, Cand Sci. (Tech. Sci.) Dissertation (Vladimir State Univ., Vladimir, Russia, 2013).

  118. A. V. Aborkin, M. I. Alymov, A. V. Sobol’kov, K. S. Khor’kov, and D. M. Babin, Russ. Metall. 2018, 625 (2018).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 16-12-10424-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Reshetniak.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reshetniak, V.V., Aborkin, A.V. Aluminum–Carbon Interaction at the Aluminum–Graphene and Aluminum–Graphite Interfaces. J. Exp. Theor. Phys. 130, 214–227 (2020). https://doi.org/10.1134/S1063776120010173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120010173

Navigation