Skip to main content
Log in

Photon Recoil in Light Scattering by a Bose–Einstein Condensate of a Dilute Gas

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Photon recoil upon light scattering by a Bose–Einstein condensate (BEC) of a dilute atomic gas is analyzed theoretically accounting for a weak interatomic interaction. Our approach is based on the Gross–Pitaevskii equation for the condensate, which is coupled to the Maxwell equation for the field. The dispersion relations of recoil energy and momentum are calculated, and the effect of weak nonideality of the condensate on the photon recoil is ubraveled. A good agreement between the theory and experiment [7] on the measurement of the photon recoil momentum in a dispersive medium is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. S. Weiss, B. C. Young, and S. Chu, Phys. Rev. Lett. 70, 2706 (1993).

    Article  ADS  Google Scholar 

  2. B. Taylor, Metrologia 31, 181 (1994).

    Article  ADS  Google Scholar 

  3. A. Wicht, J. M. Hensley, E. Sarajlic, and S. Chu, Phys. Scr. T 102, 82 (2002).

    Article  ADS  Google Scholar 

  4. S. Gupta, K. Dieckmann, Z. Hadzibabic, and D. E. Pritchard, Phys. Rev. Lett. 89, 140401 (2002).

    Article  ADS  Google Scholar 

  5. R. Battesti, P. Clade, S. Guellati-Khélifa, C. Schwob, B. Grémaud, F. Nez, L. Julien, and F. Biraben, Phys. Rev. Lett. 92, 253001 (2004).

    Article  ADS  Google Scholar 

  6. Y. Le Coq, J. A. Retter, S. Richard, A. Aspect, and P. Bouyer, Appl. Phys. B 84, 627 (2006).

    Article  ADS  Google Scholar 

  7. G. K. Campbell, A. E. Leanhardt, J. Mun, M. Boyd, E. W. Streed, W. Ketterle, and D. E. Pritchard, Phys. Rev. Lett. 94, 170403 (2005).

    Article  ADS  Google Scholar 

  8. Y. V. Gott, M. S. Ioffe, and V. G. Telkovsky, Nucl. Fusion, Suppl., No. 3, 1045 (1962).

  9. D. E. Pritchard, Phys. Rev. Lett. 94, 1336 (1983).

    Article  ADS  Google Scholar 

  10. S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, J. Stenger, D. E. Pritchard, and W. Ketterle, Science (Washington, DC, U. S.) 285, 571 (1999).

    Article  Google Scholar 

  11. D. Schneble, J. Torii, M. Boyd, E. W. Streed, D. E. Pritchard, and W. Ketterle, Science (Washington, DC, U. S.) 300, 475 (2003).

    Article  ADS  Google Scholar 

  12. Yu. A. Avetisyan, V. A. Malyshev, and E. D. Trifonov, J. Phys. B 50, 085002 (2017).

    Article  ADS  Google Scholar 

  13. E. P. Gross, Nuovo Cim. 20, 454 (1961);

    Article  ADS  Google Scholar 

  14. J. Math. Phys. 4, 195 (1963).

  15. L. P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961).

    Google Scholar 

  16. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).

    Article  ADS  Google Scholar 

  17. L. P. Pitaevskii and S. Stringari, Bose Einstein Condensation (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  18. M. G. Benedict, A. M. Ermolaev, V. A. Malyshev, I. V. Sokolov, and E. D. Trifonov, Super-Radiance: Multiatomic Coherent Emission (IOP, Bristol, 1996).

    Google Scholar 

  19. M. G. Moore and P. Meystre, Phys. Rev. Lett. 83, 5202 (1999).

    Article  ADS  Google Scholar 

  20. O. E. Mustecaplioglu and L. You, Phys. Rev. A 62, 063615 (2000).

    Article  ADS  Google Scholar 

  21. N. Piovella, M. Gatelli, and R. Bonifacio, Opt. Commun. 194, 167 (2001).

    Article  ADS  Google Scholar 

  22. E. D. Trifonov, J. Exp. Theor. Phys. 120, 969 (2001);

    Article  ADS  Google Scholar 

  23. Theor. Math. Phys. 139, 823 (2004);

  24. Opt. Spectrosc. 98, 497 (2005);

  25. E. D. Trifonov, Laser Phys. 12, 211 (2002);

    Google Scholar 

  26. Laser Phys. Lett. 2, 153 (2005).

  27. H. Pu, W. Zhang, and P. Meystre, Phys. Rev. Lett. 91, 150407 (2003).

    Article  ADS  Google Scholar 

  28. C. Benedek and M. G. Benedict, J. Opt. B 6, 3 (2004).

    Article  Google Scholar 

  29. Yu. A. Avetisyan and E. D. Trifonov, Laser Phys. Lett. 1, 373 (2004);

    Article  ADS  Google Scholar 

  30. Laser Phys. Lett. 2, 512 (2005);

  31. Laser Phys. Lett. 4, 247 (2007);

  32. Laser Phys. 19, 545 (2009);

  33. Phys. Rev. A 88, 025601 (2013);

  34. Yu. A. Avetisyan and E. D. Trifonov, J. Exp. Theor. Phys. 103, 667 (2007);

    Article  ADS  Google Scholar 

  35. Opt. Spectrosc. 100, 270 (2006);

  36. J. Exp. Theor. Phys. 106, 426 (2008);

  37. Opt. Spectrosc. 105, 557 (2008);

  38. Phys. Usp. 58, 286 (2015).

  39. E. D. Trifonov and N. I. Shamrov, J. Exp. Theor. Phys. 99, 43 (2004).

    Article  ADS  Google Scholar 

  40. G. R. M. Robb, N. Piovella, and R. Bonifacio, J. Opt. B 7, 93 (2005).

    Article  ADS  Google Scholar 

  41. N. I. Shamrov, Laser Phys. 16, 1734 (2006);

    Article  Google Scholar 

  42. Laser Phys. 17, 1424 (2007).

  43. O. Zobay and G. M. Nikolopoulos, Phys. Rev. A 73, 013620 (2006);

    Article  ADS  Google Scholar 

  44. Laser Phys. 17, 180 (2007).

  45. N. Bar-Gill, E. E. Rowen, and N. Davidson, Phys. Rev. A 76, 043603 (2007).

    Article  ADS  Google Scholar 

  46. N. Piovella, L. Volpe, M. M. Cola, and R. Bonifacio, Laser Phys. 17, 174 (2007).

    Article  ADS  Google Scholar 

  47. X. Xu, X. Zhou, and X. Chen, J. Phys. B 41, 165302 (2008).

    Article  ADS  Google Scholar 

  48. L. Deng, M. G. Payne, and E. W. Hagley, Phys. Rev. Lett. 104, 050402 (2010).

    Article  ADS  Google Scholar 

  49. C. J. Zhu, L. Deng, E. W. Hagley, and G. X. Huang, Laser Phys. 24, 065402 (2014).

    Article  ADS  Google Scholar 

  50. D. A. Steck, Rubidium 87 D Line Data. http://steck.us/alkalidata.

Download references

Funding

One of the authors (E.D.T.) acknowledges support from the Russian Foundation for Basic Research, project no. 15-02-08369-A. The development of a modified mathematical simulation algorithm for the analysis of elementary scattering events was performed by Yu.A. Avetisyan and supported by the Ministry of Science and Higher Education of the Russian Federation (State Task no. AAAA-A18-118042790042-4) and the Russian Foundation for Basic Research (project no. 19-07-00378).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. A. Avetisyan or V. A. Malyshev.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avetisyan, Y.A., Malyshev, V.A. & Trifonov, E.D. Photon Recoil in Light Scattering by a Bose–Einstein Condensate of a Dilute Gas. J. Exp. Theor. Phys. 130, 380–386 (2020). https://doi.org/10.1134/S1063776120010124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776120010124

Navigation