Skip to main content
Log in

Argentite–Acanthite Transition in Silver Sulfide as a Two-Sublattice Ordering

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a model of phase transformation cubic argentite–monoclinic acanthite in silver sulfide Ag2S (AgS0.5) as ordering in two argentite sublattices. We have determined the channel of the disorder–order transition including four nonequivalent superstructure vectors of stars {k9} and {k4}. For monoclinic acanthite α-Ag2S, we have calculated the distribution function for silver atoms occupying b positions in argentite, as well as the distribution function for sulfur atoms. Ordering in both sublattices is complicated by static atomic displacements. The displacement of S atoms distort the body-centered cubic (bcc) nonmetallic argentite sublattice, forming a monoclinic lattice in which silver atoms are at large distances from one another and occupy their crystallographic positions with unit probability. We have determined the range of admissible values of long-range order parameters η9 and η4 for the model monoclinic ordered α-Ag2S phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. C. Sharma and Y. A. Chang, Bull. Alloy Phase Diagrams 7, 263 (1986).

    Article  Google Scholar 

  2. R. C. Sharma and Y. A. Chang, in Binary Alloy Phase Diagrams, Ed. by T. B. Massalski, H. Okamoto, and L. Kacprzak (ASM Intern. Publ., Metals Park, Ohio, USA, 1990), p. 86.

    Google Scholar 

  3. S. I. Sadovnikov, A. A. Rempel, and A. I. Gusev, Nanostructured Lead, Cadmium and Silver Sulfides: Structure, Nonstoichiometry and Properties (Springer Int., Cham, Heidelberg, 2018).

    Book  Google Scholar 

  4. S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Superlatt. Microstruct. 83, 35 (2015).

    Article  ADS  Google Scholar 

  5. S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Phys. Chem. Chem. Phys. 17, 12466 (2015).

    Article  Google Scholar 

  6. H. Rau, J. Phys. Chem. Sol. 35, 1553 (1974).

    Article  ADS  Google Scholar 

  7. H. Reye and H. Schmalzried, Z. Phys. Chem. Neue Folge 128, 93 (1981).

    Article  Google Scholar 

  8. W. T. Thompson and S. N. Flengas, Can. J. Chem. 49, 1550 (1971).

    Article  Google Scholar 

  9. R. Sadanaga and S. Sueno, Mineralog. J. Jpn. 5, 124 (1967).

    Google Scholar 

  10. A. I. Gusev and S. I. Sadovnikov, Semiconductors 50, 682 (2016).

    Article  ADS  Google Scholar 

  11. S. I. Sadovnikov and A. I. Gusev, J. Mater. Chem. A 5, 17676 (2017).

    Article  Google Scholar 

  12. T. Blanton, S. Misture, N. Dontula, and S. Zdzieszynski, Powder Diffract. 26, 110 (2011).

    ADS  Google Scholar 

  13. S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Phys. Chem. Chem. Phys. 17, 20495 (2015).

    Article  Google Scholar 

  14. J. B. Boyce and B. A. Hubermam, Phys. Rep. 51, 189 (1979).

    Article  ADS  Google Scholar 

  15. L. W. Strock, Z. Phys. Chem. B 25, 411 (1934).

    Google Scholar 

  16. L. W. Strock, Z. Phys. Chem. B 31, 132 (1936).

    Google Scholar 

  17. K. Honma and K. Iida, J. Phys. Soc. Jpn. 56, 1828 (1987).

    Article  ADS  Google Scholar 

  18. O. Alekperov, Z. Jahangirli, and R. Paucar, Phys. Status Solidi B 253, 1 (2016).

    Article  Google Scholar 

  19. S. Sun and D.-G. Xia, Sol. St. Ion. 179, 2330 (2008).

    Article  Google Scholar 

  20. C. Liang, K. Terabe, T. Hasegawa, and M. Aono, Nanotechnology 18, 485202 (2007).

    Article  Google Scholar 

  21. S. I. Sadovnikov and A. I. Gusev, J. Nanopart. Res. 18, 277 (2016).

    Article  ADS  Google Scholar 

  22. A. I. Gusev and S. I. Sadovnikov, Mater. Lett. 188, 351 (2017).

    Article  Google Scholar 

  23. S. I. Sadovnikov and A. I. Gusev, JETP Lett. 109, 584 (2019).

    Article  ADS  Google Scholar 

  24. A. G. Khachaturyan, Theory of Phase Transformations and the Structure of Solid Solutions (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  25. A. I. Gusev, A. A. Rempel, and A. J. Magerl, Disorder and Order in Strongly Nonstoichiometric Compounds: Transition Metal Carbides, Nitrides and Oxides (Springer, Berlin, 2001). https://doi.org/10.1007/978-3-662-04582-4

    Book  Google Scholar 

  26. A. I. Gusev, Nonstoichiometry and Disorder, Short-Range and Long-Range Order in Solids (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  27. A. A. Rempel’ and A. I. Gusev, Nonstoichiometry in Solids (Fizmatlit, Moscow, 2018) [in Russian].

  28. O. V. Kovalev, Irreducible and Induced Representations and Co-Representations of Fedorov’s Groups (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  29. Yu. A. Izyumov, V. E. Naish, and R. P. Ozerov, Neutronography of Magnets (Atomizdat, Moscow, 1981) [in Russian].

    Google Scholar 

  30. S. I. Sadovnikov and E. Yu. Gerasimov, Nanoscale Adv. 1, 1581 (2019).

    Article  ADS  Google Scholar 

  31. S. I. Sadovnikov and A. A. Rempel, Semiconductors 53, 941 (2019).

    Article  ADS  Google Scholar 

  32. A. I. Gusev and A. A. Rempel, Phys. Status Solidi A 135, 15 (1993).

    Article  ADS  Google Scholar 

  33. S. I. Sadovnikov, A. I. Gusev, A. V. Chukin, and A. A. Rempel, Phys. Chem. Chem. Phys. 18, 4617 (2016).

    Article  Google Scholar 

  34. F. Grønvold and E. F. Westrum, J. Chem. Therm. 18, 381 (1986).

    Article  Google Scholar 

  35. A. I. Gusev, A. S. Kurlov, and V. N. Lipatnikov, J. Sol. St. Chem. 180, 3234 (2007).

    Article  ADS  Google Scholar 

  36. A. I. Gusev, J. Exp. Theor. Phys. 113, 96 (2011).

    Article  ADS  Google Scholar 

  37. A. I. Gusev, Phys. Usp. 57, 839 (2014).

    Article  ADS  Google Scholar 

  38. A. A. Valeeva, A. A. Rempel’, and A. I. Gusev, JETP Lett. 71, 621 (2000).

    Article  Google Scholar 

  39. A. I. Gusev, J. Exp. Theor. Phys. 117, 293 (2013).

    Article  ADS  Google Scholar 

  40. D. A. Davydov and A. I. Gusev, J. Exp. Theor. Phys. 108, 267 (2009).

    Article  ADS  Google Scholar 

  41. A. I. Gusev, D. A. Davydov, and A. A. Valeeva, J. Alloys Compd. 509, 1364 (2011).

    Article  Google Scholar 

  42. S. I. Sadovnikov, N. S. Kozhevnikova, and A. A. Rempel, Semiconductors 44, 1349 (2010).

    Article  ADS  Google Scholar 

  43. S. I. Sadovnikov and A. I. Gusev, J. Alloys Compd. 610, 196 (2014).

    Article  Google Scholar 

  44. S. I. Sadovnikov, A. V. Chukin, A. A. Rempel, and A. I. Gusev, Phys. Sol. St. 58, 30 (2016).

    Article  ADS  Google Scholar 

  45. S. I. Sadovnikov, E. A. Kozlova, E. Yu. Gerasimov, A. A. Rempel, and A. I. Gusev, Int. J. Hydrogen Energy 42, 25258 (2017).

    Article  Google Scholar 

  46. S. I. Sadovnikov, N. S. Kozhevnikova, and A. I. Gusev, Semiconductors 45, 1559 (2011).

    Article  ADS  Google Scholar 

  47. A. I. Gusev, S. I. Sadovnikov, A. V. Chukin, and A. A. Rempel, Phys. Sol. St. 58, 251 (2016).

Download references

Funding

This study was financially supported by the Russian Science Foundation (project no. 19-73-20012) through the Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Gusev.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusev, A.I., Sadovnikov, S.I. Argentite–Acanthite Transition in Silver Sulfide as a Two-Sublattice Ordering. J. Exp. Theor. Phys. 129, 1045–1054 (2019). https://doi.org/10.1134/S1063776119120045

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119120045

Navigation