Skip to main content
Log in

Casimir Energy of an Open String with Angle-Dependent Boundary Conditions

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider an open string with ends laying on the two different solid beams (rods). This setup is equivalent to two scalar fields with a set of constraints at their end-points. We calculate the zero-point energy and the Casimir energy in three different ways: (1) by use of the Hurwitz zeta function, (2) by employing the contour integration method in the complex frequency plane, and (3) by constructing the Green’s function for the system. In the case of contour integration we also present a finite temperature expression for the Casimir energy, along with a convenient analytic approximation for high temperatures. The Casimir energy at zero temperature is found to be a sum of the Luscher potential energy and a term depending on the angle between the beams. The relationship of this model to an analogous open string model with charges fixed at its ends, moving in an electromagnetic field, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. A. Milton, The Casimir Energy: Physical Manifestations of Zero-Point Energy (World Scientific, Singapore, 2001).

    Book  Google Scholar 

  2. M. Luscher, K. Symanzik, and P. Weisz, Nucl. Phys. B 173, 365 (1980).

    Article  ADS  Google Scholar 

  3. M. Luscher, Nud. Phys. B 180, 317 (1981).

    Article  ADS  Google Scholar 

  4. O. Alvarez, Phys. Rev. D 24, 440 (1981).

    Article  ADS  Google Scholar 

  5. L. Hadasz, G. Lambiase, and V. V. Nesterenko, Phys. Rev. D 62, 025011 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  6. I. Brevik, A. A. Bytsenko, and B. M. Pimentel, in Theoretical Physics 2002, Ed. by T. F. George and H. F. Arnoldus (Nova Science, New York, 2003).

    Google Scholar 

  7. I. Brevik and H. B. Nielsen, Phys. Rev. D 41, 1185 (1990).

    Article  ADS  MathSciNet  Google Scholar 

  8. I. Brevik and E. Elizalde, Phys. Rev. D 49, 5319 (1994).

    Article  ADS  Google Scholar 

  9. I. Brevik and H. B. Nielsen, Phys. Rev. D 51, 1869 (1995).

    Article  ADS  Google Scholar 

  10. E. D’Hoker and P. Sikivie, Phys. Rev. Lett. 71, 1136 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  11. E. Elizalde and S. D. Odintsov, Class. Quant. Grav. 12, 2881 (1995).

    Article  ADS  Google Scholar 

  12. G. Lambiase and V. V. Nesterenko, Phys. Rev. D 54, 6387 (1996).

    Article  ADS  Google Scholar 

  13. H. Kleinert, G. Lambiase, and V. V. Nesterenko, Phys. Lett. B 384, 213 (1996).

    Article  ADS  Google Scholar 

  14. A. Jahan and S. Sukhasena, Int. J. Mod. Phys. A 33, 1850097 (2018).

    Article  ADS  Google Scholar 

  15. R. de L. Kronig and W. G. Penney, Proc. R. Soc. London, Ser. A 130, 499 (1931).

    Article  ADS  Google Scholar 

  16. E. Elizalde, S. D. Odintsov, A. Romeo, A. A. Bytsenko, and S. Zerbini, Zeta Regularization Techniques with Applications (World Scientific, Singapore, 1994).

    Book  Google Scholar 

  17. E. Elizalde, Ten Physical Applications of Spectral Zeta Functions (Springer, Berlin, 1995).

    MATH  Google Scholar 

  18. X. Li, X. Shi and J. Zhang, Phys. Rev. D 44, 560 (1991).

    Article  ADS  Google Scholar 

  19. C.-J. Feng and X.-Z. Li, Phys. Lett. B 691, 167 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  20. Yu. S. Barash and V. L. Ginzburg, in Electromagnetic Fluctuations and Molecular Forces in Condensed Matter, Ed. by L. V. Keldysh (Elsevier, Amsterdam, 1989), Chap. 6.

    Book  Google Scholar 

  21. N. G. van Kampen, B. R. A. Nijboer, and K. Schram, Phys. Lett. A 26, 307 (1968).

    Article  ADS  Google Scholar 

  22. K. A. Milton, P. Kalauni, P. Parashar, and Y. Li, Phys. Rev. D 99, 045013 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  23. J. S. Hø ye, I. Brevik and K. A. Milton, Phys. Rev. A 94, 032113 (2016).

    Article  ADS  Google Scholar 

  24. I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th ed. (Academic, New York, 2007).

    MATH  Google Scholar 

  25. V. V. Nesterenko, Int. J. Mod. Phys. A 4, 2627 (1989).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I. B. thanks Vladimir Nesterenko for valuable information. The same author acknowledges financial support from the Research Council of Norway, project 250346.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Jahan.

APPENDIX A

APPENDIX A

To evaluate the infinite sum in the first line of (50) we write

$$\begin{gathered} \sum\limits_{n = - \infty }^\infty {\ln (n_{r}^{2} + {{\kappa }^{2}}) = \ln \prod\limits_{n = - \infty }^\infty {(n_{r}^{2} + {{\kappa }^{2}})} } \\ = \ln \left[ {\prod\limits_{n = - \infty }^\infty {({{n}_{r}} + i\kappa )} \prod\limits_{n = - \infty }^\infty {({{n}_{r}} - i\kappa )} } \right], \\ \end{gathered} $$
((A.1))

where nr = n + r. Then by virtue of the formula

$$\prod\limits_{n = - \infty }^\infty {(nx + y) = \sin \left( {\frac{{\pi x}}{y}} \right)} $$
((A.2))

we get

$$\begin{gathered} \sum\limits_{n = - \infty }^\infty {\ln (n_{r}^{2} + {{\kappa }^{2}})} \\ = \ln \sinh \pi (\kappa + ir) + \ln \sinh \pi (\kappa - ir). \\ \end{gathered} $$
((A.3))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahan, A., Brevik, I. Casimir Energy of an Open String with Angle-Dependent Boundary Conditions. J. Exp. Theor. Phys. 129, 831–837 (2019). https://doi.org/10.1134/S1063776119110049

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119110049

Navigation