Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Calculation and Comparison of Electronic, Vibrational, Polarization, and Magnetic Properties of Double Perovskites CaMnTi2O6 and CaFeTi2O6

  • 10 Accesses


Vibrational, polarization, magnetic, and electronic properties of double perovskites CaMnTi2O6 and CaFeTi2O6 with a rare type of “column” ordering of divalent metal cations have been calculated based on the density functional theory. Analysis of the crystal lattice dynamics for paraelectric phase P42/nmc of both compounds has revealed that ferroelectric instability exists only in CaMnTi2O6. It is found that the structure distortion of the paraphrase of CaMnTi2O6 in the eigenvector of the unstable polar mode leads to a structure with the P42/nmc space group. The calculated spontaneous polarization for the ferroelectric phase of CaMnTi2O6 is Ps = 25 μC/cm2. The spin-polarization calculations have shown that the ground state is ferromagnetic in the CaFeTi2O6 crystal and antiferromagnetic in the CaMnTi2O6 crystal. The exchange interaction constants have been calculated using the Heisenberg model and the mean field approximation; the phase transition temperature for each compound has been estimated.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.


  1. 1

    Y. Bai, L. Han, X. Liu, X. Deng, et al., J. Solid State Chem. 217, 64 (2014).

  2. 2

    D. G. Franco, R. E. Carbonio, and G. Nieva, IEEE Trans. Magn. 49, 4594 (2013).

  3. 3

    G. Vaitheeswaran, V. Kanchana, and A. Delin, Appl. Phys. Lett. 86, 032513 (2005).

  4. 4

    D. Stoeffler and C. Etz, J. Phys.: Condens. Matter. 18, 11291 (2006).

  5. 5

    S. Gong, P. Chen, and B. G. Liu, J. Magn. Magn. Mater. 349, 74 (2014).

  6. 6

    K. Leinenweber and J. Parise, J. Solid State Chem. 114, 277 (1995).

  7. 7

    A. Aimi, D. Mori, K. Hiraki, et al., Chem. Mater. 26, 2601 (2014).

  8. 8

    A. M. Glazer, Acta Crystallogr., Sect. B 28, 3384 (1972).

  9. 9

    X. Li, W. M. Xu, M. A. McGuire, et al., Phys. Rev. B 98, 064201 (2018).

  10. 10

    N. Yao, A. Navrotsky, and K. Leinenweber, J. Solid State Chem. 123, 73 (1996).

  11. 11

    G. Gou, N. Charles, J. Shi, et al., Inorg. Chem. 56, 11854 (2017).

  12. 12

    H. Li, S. Liu, L. Chen, et al., Phys. E (Amsterdam, Neth.) 69, 133 (2015).

  13. 13

    J. Ruiz-Fuertes, T. Bernert, D. Zimmer, et al., Phys. Rev. B 96, 094101 (2017).

  14. 14

    R. Dovesi, R. Orlando, A. Erba, et al., Int. J. Quantum Chem. 114, 1287 (2014).

  15. 15

    R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C. M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I. J. Bush, P. D’Arco, M. Llunell, M. Causà, and Y. Noël, CRYSTAL14 User’s Manual (Univ. Torino, Torino, 2014).

  16. 16

    J. Herrero-Martin et al., Phys. Rev. B 97, 235129 (2018).

  17. 17

    J. S. Smart, Effective Field Theories of Magnetism (Saunders, London, 1966; Mir, Moscow, 1968).

  18. 18

    K. M. Rabe, C. H. Ahn, and J. M. Triscone, Physics of Ferroelectrics: A Modern Perspective (Springer, Berlin, Heidelberg, 2007).

Download references


This study was performed using the equipment of the Collective Usage Center “Complex of Simulation and Data Processing of Mega-Class Experimental Setups” of the National Research Center “Kurchatov Institute.” http://ckp.nrcki.ru/.


This work was supported by the Russian Foundation for Basic Research (project no. 18-02-00130-a).

Author information

Correspondence to N. D. Andryushin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Andryushin, N.D., Zinenko, V.I., Pavlovskii, M.S. et al. Calculation and Comparison of Electronic, Vibrational, Polarization, and Magnetic Properties of Double Perovskites CaMnTi2O6 and CaFeTi2O6. J. Exp. Theor. Phys. 129, 1036–1044 (2019). https://doi.org/10.1134/S1063776119110013

Download citation