Skip to main content
Log in

X-Ray Reflectometry of the Adsorption Octadecanamide Film at the Toluene–Water Interface

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The structure of an adsorption octadecanamide film at the planar toluene–water interface is studied by X-ray reflectometry using synchrotron radiation with photon energy of 15 keV. The electron density (polarizability) profiles, according to which the interface structure is determined by the pH level in the water subphase, are reconstructed from experimental data with the help of a model-independent approach. For a high pH ≈ 11, the adsorption film is a crystalline octadecanamide monolayer with a thickness of about 26 Å, in which aliphatic tails of surfactant are extended along the normal to the surface. For low pH ≈ 2, the thickness of the surface structure consisting of the crystalline monolayer directly on the toluene–water interface and a thick layer of deposited octadecanamide micelles reaches about 500 Å. In our opinion, the condensation of nonionogenic surfactant micelles for which the surface concentration of the surfactant increases significantly is caused by a change in the polarization direction upon a decrease in the pH level in the electric double layer at the interface between the water subphase and the octadecanamide monolayer. The shape of the reconstructed electron density profiles also indicates the existence of a plane of the closest approach of surfactant micelles to the interface at a distance of about 70 Å from it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Lin, J. L. Ferpo, P. Mansaura, and J. F. Baret, J. Chem. Phys. 71, 2202 (1979).

    Article  ADS  Google Scholar 

  2. T. Takiue, T. Fukuda, D. Murakami, H. Sakamoto, H. Matsubara, and M. Aratono, J. Phys. Chem. B 113, 14667 (2009).

    Article  Google Scholar 

  3. T. Takiue, F. Nakamura, D. Murakami, T. Fukuda, A. Shuto, H. Matsubara, and M. Aratono, J. Phys. Chem. B 113, 6305 (2009).

    Article  Google Scholar 

  4. S. V. Kiriyan and B. A. Altoiz, Tr. MFTI 2 (2), 101 (2010).

    Google Scholar 

  5. B. A. Altoiz, A. F. Butenko, and S. V. Kiriyan, Tech. Phys. 63, 1 (2018).

    Article  Google Scholar 

  6. D. M. Mitrinovic, A. M. Tikhonov, M. Li, Z. Huang, and M. L. Schlossman, Phys. Rev. Lett. 85, 582 (2000).

    Article  ADS  Google Scholar 

  7. S. Engemann, H. Reichert, H. Dosch, J. Bilgram, V. Honkimaki, and A. Snigirev, Phys. Rev. Lett. 92, 205701 (2004).

    Article  ADS  Google Scholar 

  8. G. Luo, S. Malkova, J. Yoon, D. G. Schultz, B. Lin, M. Meron, I. Benjamin, P. Vanysek, and M. L. Schlossman, Science (Washington, DC, U. S.) 311, 216 (2006).

    Article  ADS  Google Scholar 

  9. A. M. Tikhonov and M. L. Schlossman, J. Phys.: Condens. Matter 19, 375101 (2007).

    Google Scholar 

  10. L. Tamam, D. Pontoni, Z. Sapir, Sh. Yefet, E. Sloutskin, B. M. Ocko, H. Reichert, and M. Deutsch, Proc. Nat. Acad. Sci. U. S. A. 108, 5522 (2011).

    Article  ADS  Google Scholar 

  11. Yu. Tokiwa, H. Sakamoto, T. Takiue, M. Aratono, and H. Matsubara, J. Phys. Chem. B 119, 6235 (2015).

    Article  Google Scholar 

  12. M. K. Sanyal, V. V. Agrawal, M. K. Bera, K. P. Kalyanikutty, J. Daillant, Ch. Blot, S. Kubowicz, O. Konovalov, and C. N. R. Rao, J. Phys. Chem. C 112, 1739 (2008).

    Article  Google Scholar 

  13. A. M. Tikhonov, JETP Lett. 104, 309 (2016).

    Article  ADS  Google Scholar 

  14. T. Takiue, T. Tottori, K. Tatsuta, H. Matsubara, H. Tanida, K. Nitta, T. Uruga, and M. Aratono, J. Phys. Chem. B 116, 13739 (2012).

    Article  Google Scholar 

  15. A. M. Tikhonov, JETP Lett. 106, 576 (2017).

    Article  ADS  Google Scholar 

  16. A. M. Tikhonov, JETP Lett. 106, 743 (2017).

    Article  ADS  Google Scholar 

  17. I. V. Kozhevnikov, Doctoral (Phys. Math.) Dissertation (Shubnikov Inst. Crystallogr. RAS, Moscow, 2013).

  18. A. M. Tikhonov, D. M. Mitrinovic, M. Li, Z. Huang, and M. L. Schlossman, J. Phys. Chem. B 104, 6336 (2000).

    Article  Google Scholar 

  19. V. Honkimaki, H. Reichert, J. Okasinski, and H. Dosch, J. Synchrotr. Rad. 13, 426 (2006).

    Google Scholar 

  20. A. M. Tikhonov, JETP Lett. 108, 102 (2018).

    Article  ADS  Google Scholar 

  21. Tables of Interatomic Distances and Configuration in Molecules and Ions, Supplement 1956–1959, Ed. by L. E. Sutton, Spec. Publ. No. 18 (The Chem. Soc., London, 1965).

  22. A. Goebel and K. Lunkenheimer, Langmuir 13, 369 (1997).

    Article  Google Scholar 

  23. A. W. Adamson, Physical Chemistry of Surfaces, 3rd ed. (Wiley, New York, 1976).

    Google Scholar 

  24. L. L. Schramm and L. G. Hepler, Can. J. Chem. 72, 1915 (1994).

    Article  Google Scholar 

  25. J. Saien and S. Akbari, J. Chem. Eng. Data 51, 1832 (2006).

    Article  Google Scholar 

  26. M. L. Schlossman, D. Synal, Y. Guan, M. Meron, G. Shea-McCarthy, Z. Huang, A. Acero, S. M. Williams, S. A. Rice, and P. J. Viccaro, Rev. Sci. Instrum. 68, 4372 (1997).

    Article  ADS  Google Scholar 

  27. L. Hanley, Y. Choi, E. R. Fuoco, F. A. Akin, M. B. J. Wijesundara, M. Li, A. M. Tikhonov, and M. L. Schlossman, Nucl. Instrum. Methods Phys. Res. B 203, 116 (2003).

    Article  ADS  Google Scholar 

  28. J. Koo, S. Park, S. Satija, A. M. Tikhonov, J. C. Sokolov, M. H. Rafailovich, and T. Koga, J. Coll. Interf. Sci. 318, 103 (2008).

    Article  ADS  Google Scholar 

  29. A. M. Tikhonov, J. Chem. Phys. 130, 024512 (2009).

    Article  ADS  Google Scholar 

  30. A. M. Tikhonov, J. Exp. Theor. Phys. 127, 797 (2018).

    Article  ADS  Google Scholar 

  31. M. V. Smoluchovsky, Ann. Phys. 25, 205 (1908).

    Article  Google Scholar 

  32. L. Mandelstamm, Ann. Phys. 41, 609 (1913).

    Article  Google Scholar 

  33. I. L. Fabelinskii, Phys. Usp. 43, 89 (2000).

    Article  ADS  Google Scholar 

  34. F. P. Buff, R. A. Lovett, and F. H. Stillinger, Phys. Rev. Lett. 15, 621 (1965).

    Article  ADS  Google Scholar 

  35. L. Nevot and P. Croce, Rev. Phys. Appl. 15, 761 (1980).

    Article  Google Scholar 

  36. S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, Phys. Rev. B 38, 2297 (1988).

    Article  ADS  Google Scholar 

  37. A. Braslau, P. S. Pershan, G. Swislow, B. M. Ocko, and J. Als-Nielsen, Phys. Rev. A 38, 2457 (1988).

    Article  ADS  Google Scholar 

  38. P. S. Venkatesh, T. Takiue, G. Guangming, A. M. Tikhonov, N. Ikeda, M. Aratono, and M. L. Schlossman, J. Dispers. Sci. Technol. 27, 715 (2006).

    Article  Google Scholar 

  39. D. M. Small, The Physical Chemistry of Lipids (Plenum, New York, 1986).

    Book  Google Scholar 

  40. D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).

    Article  ADS  Google Scholar 

  41. I. R. Peterson, G. Brezesinski, B. Struth, and E. Scalas, J. Phys. Chem. B 102, 9437 (1998).

    Article  Google Scholar 

  42. I. V. Kozhevnikov, Nucl. Instrum. Methods Phys. Res., Sect. A 508, 519 (2003).

    Google Scholar 

  43. A. M. Tikhonov, V. E. Asadchikov, and Yu. O. Volkov, JETP Lett. 102, 478 (2015).

    Article  ADS  Google Scholar 

  44. A. M. Tikhonov, V. E. Asadchikov, Yu. O. Volkov, B. S. Roshchin, I. S. Monakhov, and I. S. Smirnov, JETP Lett. 104, 873 (2016).

    Article  ADS  Google Scholar 

  45. A. M. Tikhonov, V. E. Asadchikov, Yu. O. Volkov, B. S. Roshchin, and Yu. A. Ermakov, J. Exp. Theor. Phys. 125, 1051 (2017).

    Article  ADS  Google Scholar 

  46. B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).

    Article  ADS  Google Scholar 

  47. J. W. Gibbs, Collected Works (Dover, New York, 1961), Vol. 1, p. 219.

    MATH  Google Scholar 

  48. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

  49. N. Matubayasi, K. Motomura, M. Aratono, and R. Matuura, Bull. Chem. Soc. Jpn. 51, 2800 (1978).

    Article  Google Scholar 

  50. C. J. Radke, Adv. Coll. Interf. Sci. 222, 600 (2015).

    Article  Google Scholar 

  51. J. W. McBain, Trans. Faraday Soc. 9, 99 (1913).

    Google Scholar 

  52. P. Becher, Emulsions: Theory and Practice, 3rd ed. (Am. Chem. Soc., Oxford Univ. Press, Washington, D. C., 2001).

  53. J. H. Schulman, W. Stoeckenius, and L. M. Prince, J. Phys. Chem. 63, 1677 (1959).

    Article  Google Scholar 

  54. M. Kahlweit, R. Strey, P. Firman, D. Haase, J. Jen, and R. Schomacker, Langmuir 4, 499 (1988).

    Article  Google Scholar 

  55. M. V. Flores, E. C. Voutsas, N. Spiliotis, G. M. Eccleston, G. Bell, D. P. Tassios, and P. J. Halling, J. Coll. Interf. Sci. 240, 277 (2001).

    Article  ADS  Google Scholar 

Download references

Funding

Synchrotron NSLS was used under the support of the Department of Energy (USA) (contract no. DE-AC02-98GH10886). The X19C station was financed from the ChemPatCARS funds of the University of Chicago, University of Illinois in Chicago, and the State University of New York in Stony Brook. The theoretical part of this work was supported by the Russian Science Foundation (project no. 18-12-00108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Tikhonov or Yu. O. Volkov.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonov, A.M., Volkov, Y.O. X-Ray Reflectometry of the Adsorption Octadecanamide Film at the Toluene–Water Interface. J. Exp. Theor. Phys. 129, 368–374 (2019). https://doi.org/10.1134/S1063776119090061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119090061

Navigation