Advertisement

Journal of Experimental and Theoretical Physics

, Volume 129, Issue 3, pp 455–458 | Cite as

Large-Scale Structure of Chromatin: A Fractal Globule or a Logarithmic Fractal?

  • E. G. IashinaEmail author
  • S. V. Grigoriev
STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • 24 Downloads

Abstract

Two physical models are considered to describe the large-scale structure of chromatin in the nucleus of a biological cell in the interphase state: a fractal globule model and a logarithmic fractal model. Based on the classification of fractal objects developed by the small-angle neutron scattering (SANS) method, it is shown that the fractal globule model does not satisfy the experimental data on small-angle neutron scattering by the nuclei of biological cells. Conversely, the logarithmic fractal model well describes the experimental data on SANS and, hence, provides a good approximation to describe the large-scale structure of chromatin. The logarithmic fractal model predicts that the nuclear space is exactly half-filled with chromatin, and the second half consists of interchromatin voids filled with nucleoplasma in which various nuclear processes occur. Thus, two opposing trends are balanced in the structural organization of chromatin: an increase in the surface area of chromatin in the cell nucleus (accessibility to external agents) and a decrease in the volume occupied by chromatin (compactness of the nucleus).

Notes

FUNDING

This work was supported by the Russian Foundation for Basic Research, project no. 17-02-00313.

REFERENCES

  1. 1.
    A. Yu. Grosberg, S. K. Nechaev, and E. I. Shakhnovich, J. Phys. (France) 49, 2095 (1988).CrossRefGoogle Scholar
  2. 2.
    A. Grosberg, Y. Rabin, S. Havlin, and A. Neer, Europhys. Lett. 23, 373 (1993).ADSCrossRefGoogle Scholar
  3. 3.
    B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1983).CrossRefGoogle Scholar
  4. 4.
    D. V. Lebedev, M. V. Filatov, A. I. Kuklin, A. K. Islamov, E. Kentzinger, R. A. Pantina, B. P. Toperverg, and V. V. Isaev-Ivanov, FEBS Lett. 579, 1465 (2005).CrossRefGoogle Scholar
  5. 5.
    A. V. Ilatovskiy, D. V. Lebedev, M. V. Filatov, M. G. Petukhov, and V. V. Isaev-Ivanov, J. Phys.: Conf. Ser. 351, 012007 (2012).Google Scholar
  6. 6.
    E. G. Iashina, E. V. Velichko, M. V. Filatov, W. G. Bouwman, C. P. Duif, A. Brulet, and S. V. Grigoriev, Phys. Rev. E 96, 012411 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    P. Debye and A. M. Bueche, J. Appl. Phys. 20, 518 (1949).ADSCrossRefGoogle Scholar
  8. 8.
    P. Debye, H. R. Anderson, and H. Brumberger, J. Appl. Phys. 28, 679 (1957).ADSCrossRefGoogle Scholar
  9. 9.
    E. G. Iashina and S. V. Grigoriev, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 11, 897 (2017).CrossRefGoogle Scholar
  10. 10.
    A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Nauka, Moscow, 1975) [in Russian].Google Scholar
  11. 11.
    S. V. Maleev and V. A. Ruban, Sov. Phys. JETP 35, 222 (1972).ADSGoogle Scholar
  12. 12.
    H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Clarendon, Oxford, 1971).Google Scholar
  13. 13.
    G. B. West, J. H. Brown, and B. J. Enquist, Science (Washington, DC, U. S.) 284, 1677 (1999).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Petersburg Nuclear Physics Institute, National Research Center “Kurchatov Institute”GatchinaRussia

Personalised recommendations