Magnetic and Electronic Properties of Gd-Doped Topological Insulator Bi1.09Gd0.06Sb0.85Te3

Abstract

The recent realization of quantum anomalous Hall effect and Majorana fermions observation enhance interest in magnetism investigation in topological insulators. In this work, the electronic and magnetic structure of the Gd-doped topological insulator Bi1.09Gd0.06Sb0.85Te3 were systematically studied by means of angle-resolved photoemission spectroscopy, resonance photoemission spectroscopy (ResPES) and SQUID magnetometry. Resonant features related to the Gd density of states near the Fermi level are experimentally observed. Study of magnetic structure showed antiferromagnetic ordered bulk at low temperatures as well as presence of hysteresis loop at elevated temperatures. Finally, possible mechanism of magnetism and its relation to observed electronic features are discussed.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 4 (2010).

    Article  Google Scholar 

  2. 2

    Q. Xiao-Liang and Z. Shou-Cheng, Rev. Mod. Phys. 83, 4 (2011).

    Google Scholar 

  3. 3

    M. Z. Hasan and C. L. Kane, Phys. Rev. Lett. 95, 14 (2005).

    Google Scholar 

  4. 4

    F. Liang and C. L. Kane, Phys. Rev. B 76, 4 (2007).

    Article  Google Scholar 

  5. 5

    L. Genhua, Zh. Guanghu, and Ch. Yong-Ha, Appl. Phys. Lett. 101, 22 (2012).

    Google Scholar 

  6. 6

    A. Díaz-Fernández, L. Chico, J. W. González, et al., Sci. Rep. 7, 8058 (2017).

    ADS  Article  Google Scholar 

  7. 7

    D. Hsieh, Y. Xia, D. Qian, et al., Nature (London, U.K.) 460, 1101 (2009).

    ADS  Article  Google Scholar 

  8. 8

    Y. Zhang, Cui-Zu Chang, Ke He, et al., Appl. Phys. Lett. 97, 19 (2009).

    Google Scholar 

  9. 9

    Yu. Surnin, I. I. Klimovskikh, I. I. Sostina, K. A. Kokh, O. E. Tereshchenko, and A. M. Shikin, J. Exp. Theor. Phys. 126, 535 (2018).

    ADS  Article  Google Scholar 

  10. 10

    Z. H. Zhu, G. Levy, B. Ludbrok, et al., Phys. Rev. Lett. 107, 18 (2011).

    Google Scholar 

  11. 11

    R. C. Hatch, B. Marco, D. Guan, et al., Phys. Rev. B 83, 24 (2011).

    Article  Google Scholar 

  12. 12

    M. Bianchi, D. Guan, Sh. Bao, et al., Nat. Commun. 1, 128 (2011).

    ADS  Article  Google Scholar 

  13. 13

    M. V. Filyanina, I. I. Klimovskikh, S. V. Eremeev, A. A. Rybkina, A. G. Rybkin, E. V. Zhizhin, A. E. Petukhov, I. P. Rusinov, K. A. Kokh, E. V. Chulkov, O. E. Tereshchenko, and A. M. Shikin, Phys. Solid State 58, 779 (2016).

    ADS  Article  Google Scholar 

  14. 14

    D. Kong, Yu. Chen, J. Judy, et al., Nat. Phys. 6, 705 (2011).

    Google Scholar 

  15. 15

    H. Zhang, L. Chao-Xing, Q. Xiao-Liang, et al., Nat. Nanotechnol. 5, 438 (2009).

    Google Scholar 

  16. 16

    Zh. Ren, A. A. Taskin, Satoshi Sasaki, et al., Phys. Rev. B 82, 241306(R) (2010).

  17. 17

    Qin Liu, Chao-Xing Liu, Cenke Xu, et al., Phys. Rev. Lett. 102, 15 (2009).

    Google Scholar 

  18. 18

    L. Andrew Wray, Su-Yang Xu, Yuqi Xia, et al., Nat. Phys. 7, 855 (2010).

    Article  Google Scholar 

  19. 19

    P. P. J. Haazen, J.-B. Laloe, T. J. Nummy, et al., Appl. Phys. Lett. 10, 8 (2012).

    Google Scholar 

  20. 20

    Su-Yang Xu, Madhab Neupane, Chang Liu, et al., Nat. Phys. 8, 616 (2012).

    Article  Google Scholar 

  21. 21

    Cui-Zu Chang, Peizhe Tang, Yi-Lin Wang, et al., Science (Washington, DC, U. S.) 112, 5 (2014).

    Google Scholar 

  22. 22

    Cui-Zu Chang, Jinsong Zhang, Xiao Feng, et al., Science (Washington, DC, U. S.) 340, (2013).

  23. 23

    Cui-Zu Chang, Weiwei Zhao, D. Y. Kim, et al., Nat. Mater. 14, 473 (2015).

    ADS  Article  Google Scholar 

  24. 24

    M. Mogi, R. Yoshimi, A. Tsukazaki, et al., Appl. Phys. Lett. 107, 182401 (2015).

    ADS  Article  Google Scholar 

  25. 25

    Ke He, Yayu Wang, and Qi-Kun Xue, Nat. Sci. Rev. 1, 1 (2014).

    Article  Google Scholar 

  26. 26

    Peng Zhang, Koichiro Yaji, Takahiro Hashimoto, et al., Science 13, 182 (2018).

    ADS  Article  Google Scholar 

  27. 27

    A. I. Figueroa A. A. Bakera S. E. Harrison, et al., J. Magn. Magn. Mater. 422, 93 (2017).

  28. 28

    S. E. Harrison, L. J. Collins-McIntyre, P. Schonherr, et al., Sci. Rep. 5, 15767 (2015).

    ADS  Article  Google Scholar 

  29. 29

    S. E. Harrison, L. J. Collins-McIntyre, S. L. Zhang, et al., Appl. Phys. Lett. 107, 8 (2015).

    Article  Google Scholar 

  30. 30

    J. Jensen and A. R. Mackintosh, Rare Earth Magnetism (Clarendon, Oxford, 1991).

    Google Scholar 

  31. 31

    Bei Deng, Yiou Zhang, S. B. Zhang, et al., Phys. Rev. B 94, 5 (2016).

    Google Scholar 

  32. 32

    W. Klemm, Z. Anorg. Chem. 187, 29 (1930).

    Google Scholar 

  33. 33

    H. E. Nigh, S. Legvold, and F. H. Spedding, Phys. Rev. 132, 1092 (1963).

    ADS  Article  Google Scholar 

  34. 34

    J. Kim, K. Lee, T. Takabatake, et al., Sci. Rep. 5, 10309 (2015).

    ADS  Article  Google Scholar 

  35. 35

    S. W. Kim, S. Vrtnik, J. Dolinsek, et al., Appl. Phys. Lett. 106, 25 (2015).

    Google Scholar 

  36. 36

    S. Li, S. E. Harrison, Y. Huo, et al., Phys. Rev. B 102, 24 (2013).

    Google Scholar 

  37. 37

    R. Žitko et al., Phys. Rev. B 81, 24 (2010).

    Google Scholar 

  38. 38

    He Xiaoyue, Li Hui, Lan Chen, et al., Sci. Rep. 5, 8830 (2015).

    ADS  Article  Google Scholar 

  39. 39

    J. Sanchez-Barriga, A. Varykhalov, G. Springholz, et al., Nat. Commun. 7, 10559 (2016).

    ADS  Article  Google Scholar 

  40. 40

    M. F. Islam, C. M. Canali, A. Pertsova, et al., Phys. Rev. B 97, 15 (2018).

    Google Scholar 

  41. 41

    K. Kokh, S. V. Makarenko, V. A. Golyashov, et al., CrystEngComm 16, 4 (2014).

    Article  Google Scholar 

  42. 42

    Zeng Zhaoquan, A. Morgan Timothy, Fan Dongsheng, et al., AIP Adv. 3, 072112 (2013).

    ADS  Article  Google Scholar 

  43. 43

    A. M. Shikin, A. A. Rybkina, and D. A. Estyunin, Sci. Rep. 8, 6544 (2018).

    ADS  Article  Google Scholar 

  44. 44

    B. J. Kowalski et al., Acta Phys. Polon. A 91, 819 (1997).

  45. 45

    N. Athanasios Chantis, T. Kotani, and M. van Schilfgaarde, Phys. Rev. B 76, 16 (2007).

    Google Scholar 

  46. 46

    E. Guziewicz, B. A. Orlowski, B. J. Kowalski, et al., Appl. Surf. Sci. 166, 237 (2000).

    ADS  Article  Google Scholar 

  47. 47

    T. Hirahara, S. V. Eremeev, T. Shirasawa, et al., Nano Lett. 17, 6 (2017).

    Article  Google Scholar 

  48. 48

    El M. Kholdi, M. Averous, S. Charar, et al., Phys. Rev. B 49, 3 (1994).

    Google Scholar 

  49. 49

    A. M. Shikin, I. I. Klimovskikh, S. V. Eremeev, et al., Phys. Rev B 89, 125416 (2014).

    ADS  Article  Google Scholar 

  50. 50

    M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).

    ADS  Article  Google Scholar 

  51. 51

    D. K. Efimkin, V. Galitski, et al., Phys. Rev. B 89, 11 (2014).

    Article  Google Scholar 

  52. 52

    A. Generalov M. M. Otrokov, A. Chikina, et al., Nano Lett. 17, 2 (2017).

    ADS  Article  Google Scholar 

  53. 53

    A. Chikina, M. Hoppner, S. Seiro, et al., Nat. Commun. 5, 3171 (2014).

    ADS  Article  Google Scholar 

  54. 54

    Mingda Li, Cui-Zu Chang, Lijun Wu, et al., Phys. Rev. Lett. 114, 146802 (2015).

    ADS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were also carried out at the resource centers of St. Petersburg State University “Physical Methods for Surface Research” and “Diagnosis of functional materials for medicine, pharmacology and nanoelectronics”. We are grateful to the staff of the Helmholtz Center in Berlin for financial and technical support.

Funding

This work was supported by a research grant from the Ministry of Education and Science of the Russian Federation and St. Petersburg State University (grant no. 15.61.202.2015), by Russian Science Foundation (grant no. 18-12-00062), by Russian Foundation of Basic Researches (grant no. 17-08-00955) and by state contract of IGM SB RAS. In addition the work was supported by German-Russian Interdisciplinary Science Center (G-RISC) funded by the German Federal Foreign Office via the German Academic Exchange Service (DAAD) and Russian-German laboratory at BESSY II (Helmholtz-Zentrum Berlin).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. O. Filnov.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Filnov, S.O., Surnin, Y.A., Koroleva, A.V. et al. Magnetic and Electronic Properties of Gd-Doped Topological Insulator Bi1.09Gd0.06Sb0.85Te3. J. Exp. Theor. Phys. 129, 404–412 (2019). https://doi.org/10.1134/S106377611908003X

Download citation