Skip to main content
Log in

Dynamical Theory of X-Ray Diffraction in a Crystal with a Surface Grating of Another Material

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A general theory is developed for dynamical X-ray diffraction in a crystal on the surface of which a lateral periodic structure of thin-film lines (strips) of another material is formed. On the basis of the model of edge forces, the fields of elastic lattice displacements in the substrate are calculated that arise as a result of formation of a lateral surface grating (SG). With the use of the formalism of diffraction of spatially restricted X-ray beams, solutions are obtained for the amplitudes of X-ray waves reflected from a crystal with an SG whose chemical composition differs from the composition of the substrate. A numerical simulation is carried out of X-ray diffraction in a silicon substrate with SGs of tungsten and SiO2 oxide. It is shown that the angular distributions of the scattering intensity by a silicon crystal with tungsten and oxide lines of identical size differ significantly, and the physical nature of such difference is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. A. Iida and K. Kohra, Phys. Status Solidi A 51, 533 (1979).

    Article  ADS  Google Scholar 

  2. V. V. Aristov, A. I. Erko, A. Yu. Nikulin, et al., Opt. Commun. 58, 300 (1986).

    Article  ADS  Google Scholar 

  3. V. V. Aristov, A. Yu. Nikulin, A. A. Snigirev, et al., Phys. Status Solidi A 95, 81 (1986).

    Article  ADS  Google Scholar 

  4. R. Tucoulou, R. Pascal, M. Brunel, et al., J. Appl. Crystallogr. 33, 1019 (2000).

    Article  Google Scholar 

  5. V. I. Punegov, Ya. I. Nesterets, and D. V. Roshchupkin, J. Appl. Crystallogr. 43, 520 (2010).

    Article  Google Scholar 

  6. V. V. Aristov, S. M. Kuznetsov, A. V. Kouyumchyan, et al., Phys. Status Solidi A 125, 57 (1991).

    Article  ADS  Google Scholar 

  7. P. Ershov, S. Kuznetsov, I. Snigireva, et al., J. Appl. Crystallogr. 46, 1475 (2013).

    Article  Google Scholar 

  8. D. V. Roshchupkin, D. V. Irzhak, S. L. Shabel’nikova, et al., J. Surf. Invest., X-ray, Synchrotr. Neutron Tech. 7, 663 (2013).

    Article  Google Scholar 

  9. D. V. Irzhak, M. A. Knyasev, V. I. Punegov, et al., J. Appl. Crystallogr. 48, 1159 (2015).

    Article  Google Scholar 

  10. A. Erko and A. Firsov, Proc. SPIE 5539, 148 (2004).

    Article  ADS  Google Scholar 

  11. V. I. Punegov and S. I. Kolosov, JETP Lett. 102, 135 (2015).

    Article  ADS  Google Scholar 

  12. M. Bazzan, C. Sada, N. Argiolas, et al., J. Appl. Phys. 106, 104121 (2009).

    Article  ADS  Google Scholar 

  13. V. V. Aristov, V. N. Mordkovich, A. Yu. Nikulin, et al., Phys. Status Solidi A 120, K1 (1990).

    Article  ADS  Google Scholar 

  14. A. Daniel, Y. Zhuang, J. Stangl, et al., in Proceedings of the GMe Forum, 2001, p. 165.

  15. Y. Ezzaidi, G. Gaudeau, S. Escoubas, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 284, 23 (2012).

    Google Scholar 

  16. M. Eberlein, S. Escoubas, M. Gailhanou, et al., Phys. Status Solidi A 204, 2542 (2007).

    Article  ADS  Google Scholar 

  17. S. Takagi, Acta Crystallogr. 15, 1311 (1962).

    Article  Google Scholar 

  18. V. I. Punegov, K. M. Pavlov, A. V. Karpov, et al., J. Appl. Crystallogr. 50, 1256 (2017).

    Article  Google Scholar 

  19. V. I. Punegov, J. Exp. Theor. Phys. 127, 210 (2018).

    Article  ADS  Google Scholar 

  20. Shin-Lin Chang, Multiple Diffraction of X-Rays in Crystals (Springer, Berlin, 1984).

  21. V. I. Punegov and D. V. Roshchupkin, Crystallogr. Rep. 57, 24 (2012).

    Article  ADS  Google Scholar 

  22. A. Authier, Dynamical Theory of X-Ray Diffraction (Oxford Univ. Press, New York, 2001).

    MATH  Google Scholar 

  23. T. Arai, H. Nakaie, K. Kamimura, et al., J. Mater. Sci. Chem. Eng. 4, 29 (2016).

    Google Scholar 

  24. S. C. Jain, H. E. Maes, K. Pinardi, et al., J. Appl. Phys. 79, 8145 (1996).

    Article  ADS  Google Scholar 

  25. G. G. Stoney, Proc. R. Soc. London, Ser. A 82, 172 (1909).

    Article  ADS  Google Scholar 

  26. Z. Zhang, J. Yoon, and Z. Suo, Appl. Phys. Lett. 89, 261912 (2006).

    Article  ADS  Google Scholar 

  27. A. Blech and E. S. Meieran, J. Appl. Phys. 38, 2913 (1967).

    Article  ADS  Google Scholar 

  28. S. M. Hu, Appl. Phys. Lett. 32, 5 (1978).

    Article  ADS  Google Scholar 

  29. S. M. Hu, J. Appl. Phys. 50, 4661 (1979).

    Article  ADS  Google Scholar 

  30. S. Isomae, J. Appl. Phys. 52, 2782 (1981).

    Article  ADS  Google Scholar 

  31. E. Suhir, J. Appl. Mech. 53, 657 (1986).

    Article  ADS  Google Scholar 

  32. A. Atkinson, T. Johnson, A. H. Harker, et al., Thin Solid Films 274, 106 (1996).

    Article  ADS  Google Scholar 

  33. I. De Wolf, M. Ignat, G. Pozza, et al., J. Appl. Phys. 85, 6477 (1999).

    Article  ADS  Google Scholar 

  34. C.-H. Hsueh, J. Appl. Phys. 88, 3022 (2000).

    Article  ADS  Google Scholar 

  35. S. P. Wong, H. J. Peng, and S. Zhao, Appl. Phys. Lett. 79, 1628 (2001).

    Article  ADS  Google Scholar 

  36. S. C. Jain, A. H. Haker, A. Atkinson, et al., J. Appl. Phys. 78, 1630 (1995).

    Article  ADS  Google Scholar 

  37. A. Loubens, R. Fortunier, R. Fillit, et al., Microelectron. Eng. 70, 455 (2003).

    Article  Google Scholar 

  38. J. Vanhellemont, S. Amelinckx, and C. Claeys, J. Appl. Phys. 61, 2170 (1987).

    Article  ADS  Google Scholar 

  39. S. Stepanov and R. Forrest, J. Appl. Crystallogr. 41, 958 (2008).

    Article  Google Scholar 

  40. D. R. França and A. Blouin, Meas. Sci. Technol. 15, 859 (2004).

    Article  ADS  Google Scholar 

  41. Y.-L. Shen, S. Suresh, and I. A. Blech, J. Appl. Phys. 80, 1388 (1996).

    Article  ADS  Google Scholar 

  42. V. I. Punegov and A. A. Lomov, J. Exp. Theor. Phys. 127, 236 (2018).

    Article  ADS  Google Scholar 

  43. V. I. Punegov, Phys. Usp. 58, 419 (2015).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part by the Ural Branch of the Russian Academy of Sciences within the Fundamental Research Program (project no. 18-10-2-23) and by the Russian Foundation for Basic Research (project no. 17-02-00090-a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Punegov.

Additional information

Translated by I. Nikitin

APPENDIX

APPENDIX

The elastic deformations arising in the substrate can be calculated with the use of relations (33):

$$\begin{gathered} {{\varepsilon }_{{xx}}} = \frac{1}{{{{E}_{s}}}}[{{\sigma }_{{xx}}} - {{\nu }_{s}}{{\sigma }_{{zz}}}] \\ = - \frac{{2{{F}_{f}}}}{{\pi {{E}_{s}}}}\left( {\frac{{{{x}^{3}}}}{{{{{({{x}^{2}} + {{z}^{2}})}}^{2}}}} - {{\nu }_{s}}\frac{{x{{z}^{2}}}}{{{{{({{x}^{2}} + {{z}^{2}})}}^{2}}}}} \right), \\ \end{gathered} $$
((A.1))
$$\begin{gathered} {{\varepsilon }_{{zz}}} = \frac{1}{{{{E}_{s}}}}[{{\sigma }_{{zz}}} - {{\nu }_{s}}{{\sigma }_{{xx}}}] \\ = - \frac{{2{{F}_{f}}}}{{\pi {{E}_{s}}}}\left( {\frac{{x{{z}^{2}}}}{{{{{({{x}^{2}} + {{z}^{2}})}}^{2}}}} - {{\nu }_{s}}\frac{{{{x}^{3}}}}{{{{{({{x}^{2}} + {{z}^{2}})}}^{2}}}}} \right). \\ \end{gathered} $$
((A.2))

Knowing the relation between the strains and the fields of lattice displacements, εxx = dux/dx and εzz = duz/dx, we obtain

$${{u}_{x}} = - \frac{{2{{F}_{f}}}}{{\pi {{E}_{s}}}}\left( {\frac{{{{x}^{2}} + {{\nu }_{s}}{{z}^{2}}}}{{2({{x}^{2}} + {{z}^{2}})}} + \frac{1}{2}\ln {\text{|}}{{x}^{2}} + {{z}^{2}}{\text{|}}} \right),$$
((A.3))
$${{u}_{z}}\, = \,\frac{{2{{F}_{f}}}}{{\pi {{E}_{s}}}}\left( {(1\, + \,{{\nu }_{s}})\frac{{zx}}{{2({{x}^{2}}\, + \,{{z}^{2}})}} - (1\, - \,{{\nu }_{s}})\frac{1}{2}{\text{arctan}}\frac{z}{x}} \right).$$
((A.4))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punegov, V.I. Dynamical Theory of X-Ray Diffraction in a Crystal with a Surface Grating of Another Material. J. Exp. Theor. Phys. 129, 197–209 (2019). https://doi.org/10.1134/S1063776119070185

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119070185

Navigation