Skip to main content
Log in

Study of Pion Transverse Momentum Distributions in Ultra-Relativistic Heavy Ion Collisions: A USTFM Approach

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The mid-rapidity (|y| < 0.5) transverse momentum distributions of identified charged pions produced in different collision systems at different centre-of-mass energies (\({{\sqrt S }_{{NN}}}\)) ranging from RHIC to LHC have been studied using our early proposed unified statistical thermal freeze-out model (USTFM). We have also studied the effect of different collision centralities on the mid-rapidity (|y| < 0.5) production of pions. Our model results are found to be in good agreement with the experimental data. Different thermal freeze-out conditions which include transverse flow, thermal freeze-out temperature, and velocity profile have been extracted by providing the best fit to the experimental data points. We have incorporated the effects of transverse as well as longitudinal flow in this analysis. The effects of heavier decay resonances are also taken into account. Moreover, the strangeness conservation criteria have also been imposed in this analysis of pion distributions. The calculated freeze-out parameters indicates that the freeze-out temperature increases with decreasing centrality, while the transverse flow velocity increases by increase in the centrality of the colliding system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. E. Kornas et al., (NA 49 Collab.), Eur. Phys. J. C 49, 293 (2007).

    Article  ADS  Google Scholar 

  2. J. Cleymans, J. Strumpfer, and L. Turko, Phys. Rev. C 78, 017901 (2008).

    Article  ADS  Google Scholar 

  3. G. J. Alner et al., Z. Phys. C 33, 1 (1986).

    Article  ADS  Google Scholar 

  4. M. I. Gorenstein, M. S. Tsai, and Shin Nan Yang, Phys. Rev. C 51, 1465 (1995).

    Article  ADS  Google Scholar 

  5. S. Uddin et al., J. Phys. G 39, 015012 (2012).

    Article  ADS  Google Scholar 

  6. F. Becattini and U. Heinz, Z. Phys. C 76, 269 (1997).

    Article  Google Scholar 

  7. Inam-ul Bashir et al., Adv. High Energy Phys. 2018, 9285759 (2018).

    Google Scholar 

  8. F. Becattini et al., Phys. Rev. C 64, 024901 (2001).

    Article  ADS  Google Scholar 

  9. Saeed Uddin, Inam-ul Bashir, and Riyaz Ahmad Bhat, Adv. High Energy Phys. 2015, 154853 (2015).

    Article  Google Scholar 

  10. S. Uddin et al., Mod. Phys. Lett. A 30, 1550167 (2015).

    Article  ADS  Google Scholar 

  11. S. Uddin et al., Nucl. Phys. A 934, 121132 (2015).

    Article  Google Scholar 

  12. R. Ahmed Bhat, S. Uddin, and Inam-ul Bashir, Nucl. Phys. A 935, 43 (2015).

    Article  ADS  Google Scholar 

  13. Inam-ul Bashir et al., Int. J. Mod. Phys. A 30, 1550139 (2015).

    Article  Google Scholar 

  14. Inam-ul Bashir, R. Ahmad Bhat, and S. Uddin, J. Exp. Theor. Phys. 121, 206211 (2015).

  15. W. Bashir, S. Uddin, and R. Ahmad Parra, Nucl. Phys. A 969, 151 (2018).

    Article  ADS  Google Scholar 

  16. L. Adamczyk et al. (Star Collab.), Phys. Rev. C 96, 044904 (2017).

    Article  ADS  Google Scholar 

  17. B. I. Abelev et al. (Star Collab.), Phys. Rev. C 81, 024911 (2010).

    Article  ADS  Google Scholar 

  18. B. I. Abelev et al. (Star Collab.), Phys. Rev. C 77, 054901 (2008).

    Article  ADS  Google Scholar 

  19. K. Adcox et al. (Phenix Collab.), Phys. Rev. Lett. 88, 242301 (2002).

    Article  ADS  Google Scholar 

  20. J. Adams et al. (Star Collab.), Phys. Rev. Lett. 98, 062301 (2007).

    Article  ADS  Google Scholar 

  21. S. Uddin, R. Ahmad Bhat, and Inam-ul Bashir, arxiv:1412.2663 [hep-ph] (2014).

  22. Inam-ul Bashir, R. Ahmad Bhat, and S. Uddin, in Proceedings of the 59th DAE Symposium on Nuclear Physics, 2014, p. 59.

  23. Inam-ul Bashir and S. Uddin, Eur. Phys. Lett. 118, 41001 (2017).

    Article  ADS  Google Scholar 

  24. B. Abelev et al. (Alice Collab.), Phys. Rev. Lett. 109, 252301 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are thankful to the University Grants Commission (UGC) and Council of Scientific and Industrial Research (CSIR) for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Parra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parra, R.A., Uddin, S., Bashir, Iu. et al. Study of Pion Transverse Momentum Distributions in Ultra-Relativistic Heavy Ion Collisions: A USTFM Approach. J. Exp. Theor. Phys. 129, 217–228 (2019). https://doi.org/10.1134/S1063776119070173

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119070173

Navigation