Skip to main content
Log in

Decoy States and Low-Density Parity-Check Error-Correcting Codes in Quantum Cryptography with Phase–Time Coding

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The cryptographic robustness of quantum key distribution (QKD) with phase–time coding against a photon number splitting (PNS) attack is analyzed. The line length up to which a secret key distribution is guaranteed is determined both by the protocol itself and by the efficiency of error correction in raw keys. The effect of different parameters of avalanche single-photon detectors on the length of the secret key distribution line is investigated. To correct errors, various versions of low-density parity-check (LDPC) codes are considered whose efficiency today is the closest to the Shannon theoretical limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. Note that state (1) is a single-mode, formally infinitely large state. In a real situation, one uses packages localized in a time window with characteristic length of about 1 ns and spectrum width of 109 Hz. Since optical elements in quantum cryptography systems are almost linear and dispersionless (components of states with different frequencies are transformed identically) in this range, it suffices to consider states with a single wavelength.

REFERENCES

  1. C. H. Bennett and G. Brassard, in Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, Bangalore, India, 1984, p. 175.

  2. M. Tomamichel, Ch. Ci Wen Lim, N. Gisin, and R. Renner, Nat. Commun. 3, 1 (2012).

    Article  Google Scholar 

  3. A. N. Klimov, K. A. Balygin, and S. N. Molotkov, Laser Phys. Lett. 15, 075207 (2018).

    Article  ADS  Google Scholar 

  4. K. A. Balygin, A. N. Klimov, I. B. Bobrov, K. S. Kravtsov, S. P. Kulik, and S. N. Molotkov, Laser Phys. Lett. 15, 095203 (2018).

    Article  ADS  Google Scholar 

  5. L. Lydersen, C. Wiechers, Ch. Wittmann, D. Elser, J. Skaar, and V. Makarov, Nat. Photon. 4, 686 (2010).

    Article  ADS  Google Scholar 

  6. G. Brassard, N. Lütkenhaus, T. Mor, and B. C. Sanders, Phys. Rev. Lett. 85, 1330 (2000).

    Article  ADS  Google Scholar 

  7. Won-Young Hwang, arXiv[quant-ph]:0211153.

  8. Xiang-Bin Wang, Phys. Rev. Lett. 94, 230503 (2005).

    Article  ADS  Google Scholar 

  9. Hoi-Kwong Lo, Xiongfeng Ma, and Kai Chen, Phys. Rev. Lett. 94, 230504 (2005).

    Article  ADS  Google Scholar 

  10. Xiongfeng Ma, Bing Qi, Yi Zhao, and Hoi-Kwong Lo, arXiv:0503005 [quant-ph].

  11. Yi Zhao, Bing Qi, Xiongfeng Ma, Hoi-Kwong Lo, andLi Qian, arXiv:0503192 [quant-ph].

  12. D. Rosenberg, J. W. Harrington, P. R. Rice, P. A. Hiskett, C. G. Peterson, R. J. Hughes, A. E. Lita, Sae Woo Nam, and J. E. Nordholt, Phys. Rev. Lett. 98, 010503 (2007).

    Article  ADS  Google Scholar 

  13. B. Fröhlich, J. F. Dynes, M. Lucamarini, A. W. Sharpe, Zh. Yuan, and A. J. Shields, Nature (London, U.K.) 501, 69 (2013).

    Article  ADS  Google Scholar 

  14. M. Lucamarini, K. A. Patel, J. F. Dynes, B. Fröhlich, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, Opt. Express 21, 24550 (2013).

    Article  ADS  Google Scholar 

  15. Sellami Ali, Shuhairi Saharudin, and M. R. B. Wahiddin, Am. J. Eng. Appl. Sci. 2, 694 (2009).

    Article  Google Scholar 

  16. Ch. Ci Wen Lim, M. Curty, N. Walenta, Feihu Xu, and H. Zbinden, Phys. Rev. A 89, 022307 (2014); arXiv:1311.7129 [quant-ph].

    Article  ADS  Google Scholar 

  17. F. Xu, Sh. Sajeed, S. Kaiser, Zh. Tang, V. Makarov, and Hoi-Kwong Lo, Phys. Rev. A 92, 032305 (2014).

    Article  ADS  Google Scholar 

  18. Zh. Zhang, Q. Zhao, M. Razavi, and Xi. Ma, Phys. Rev. A 95, 012333 (2017).

    Article  ADS  Google Scholar 

  19. D. Gottesman, H.-K. Lo, N. Lütkenhaus, and J. Preskill, Quant. Inf. Comp. 4, 325 (2004).

    Google Scholar 

  20. S. N. Molotkov, J. Exp. Theor. Phys. 106, 1 (2008).

    Article  ADS  Google Scholar 

  21. S. N. Molotkov, JETP Lett. 102, 473 (2015).

    Article  ADS  Google Scholar 

  22. S. N. Molotkov, K. S. Kravtsov, and M. I. Ryzhkin, J. Exp. Theor. Phys. 128 (4) (2019, in press).

    Article  ADS  Google Scholar 

  23. R. Gallager, IRE Trans. Inf. Theory 8, 21 (1962).

    Article  MathSciNet  Google Scholar 

  24. R. G. Gallager, Low-Density Parity-Check Codes (MIT Press, Cambridge, 1963).

    MATH  Google Scholar 

  25. R. Renner, PhD Thesis (ETH Zürich, 2005); arXiv:0512258 [quant-ph].

  26. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2010).

    Book  Google Scholar 

  27. T. J. Richardson and R. L. Urbanke, IEEE Trans. Inf. Theory 47, 599 (2001).

    Article  Google Scholar 

  28. D. J. MacKay and R. Neal, Electron. Lett. 32, 1645 (1996).

    Article  Google Scholar 

  29. D. J. MacKay, IEEE Trans. Inf. Theory 45, 399 (1999).

    Article  Google Scholar 

  30. D. J. MacKay, Information Theory, Inference, and Learning Algorithms (Cambridge Univ. Press, Cambridge, 2003).

    MATH  Google Scholar 

  31. S. J. Johnson, Introducing Low-Density Parity-Check Codes (School of Electr. Eng. Comput. Sci., Univ. of Newcastle, Australia, 2006).

    Google Scholar 

  32. R. G. Gallager, Information Theory and Reliable Communication (Wiley, New York, London, Sydney, Toronto, 1968).

    MATH  Google Scholar 

  33. J. Martinez Mateo, PhD Thesis (Univ. Politéc. Madrid, Madrid, 2011).

  34. D. Elkouss Coronas, PhD Dissertation (Univ. Politéc. Madrid, Madrid, 2011).

  35. D. Elkouss, J. Martinez-Mateo, and V. Martin, arXiv:1103.6149 [cs.IT].

  36. IEEE Standard for Information Technology, IEEE Std. 802.11n (IEEE, 2009), Part 11.

  37. E. O. Kiktenko, A. S. Trushechkin, C. W. Lim, Y. V. Kurochkin, and A. K. Fedorov, Phys. Rev. Appl. 8, 044017 (2017).

    Article  ADS  Google Scholar 

  38. S. N. Molotkov, Laser Phys. Lett. 16, 035203 (2019).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

One of the authors (S.N.M.) is grateful to his colleagues from the Academy of Cryptography of the Russian Federation for discussions. We are grateful to I.M. Arbekov, K.A. Balygin, A.N. Klimov, K.S. Kravtsov, and S.P. Kulik for numerous and intensive discussions, as well as to I.M. Arbekov and S.P. Kulik for reading the manuscript and a number of comments that helped improve the text.

Funding

This study was supported by the Russian Science Foundation (project no. 16-12-00015 (continuation)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Molotkov.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinil’shchikov, I.V., Molotkov, S.N. Decoy States and Low-Density Parity-Check Error-Correcting Codes in Quantum Cryptography with Phase–Time Coding. J. Exp. Theor. Phys. 129, 168–196 (2019). https://doi.org/10.1134/S1063776119070124

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119070124

Navigation