Advertisement

Circular Photocurrent in Weyl Semimetals with Mirror Symmetry

  • N. V. LeppenenEmail author
  • E. L. Ivchenko
  • L. E. Golub
ELECTRONIC PROPERTIES OF SOLID

Abstract

We have considered theoretically Weyl’s semimetals, for which the point symmetry group contains reflection planes and which have equivalent valleys with opposite chiralities. These materials include the most often studied compounds, viz., monopnictides TaAs, NbAs, TaP, NbP of transition metals, as well as Bi1 ‒ xSbx alloys. Circular photogalvanic current inverting its direction upon the sign reversal of the circular polarization has been calculated for light absorption under direct optical transitions near Weyl points. The total contribution of all valleys to the photocurrent differs from zero beyond the limits of Weyl’s model when the spin-independent tilt linear in wavevector k or spin-dependent terms cubic in k are taken into account additionally in the effective electron Hamiltonian. When the tilt of the energy dispersion curve in a Weyl semimetal of symmetry \({{C}_{{4{v}}}}\) is considered, the photogalvanic current can be expressed in terms of the components of rank-two symmetric tensor determining the energy spectrum of carriers near a Weyl’s node. At low temperatures, this contribution to the photocurrent is excited in a certain limited frequency interval Δ. The photocurrent associated with cubic corrections in the optical absorption region is proportional to the square of light frequency and is generated both within window Δ and beyond its limits.

Notes

ACKNOWLEDGMENTS

One of the authors (L.E.G.) thanks the Foundation for Development of Theoretical Physics and Mathematics “BASIS.” Another author (E.L.I.) is grateful to the foundation of the Academy of Finland (grant no. 317920) for the support in the participation in International Seminar “Nanocarbon Photonics and Optoelectronics” (NPO 2018).

FUNDING

This work was supported in part by the Russian Foundation for Basic Research (project no. 19-02-00095).

REFERENCES

  1. 1.
    N. P. Armitage, E. J. Mele, and A. Vishwanath, Rev. Mod. Phys. 90, 015001 (2018).ADSCrossRefGoogle Scholar
  2. 2.
    Hao Zheng and M. Z. Hasan, Adv. Phys. X 3, 1466661 (2018).Google Scholar
  3. 3.
    E. L. Ivchenko, Optical Spectroscopy of Semiconductor Nanostructures (Alpha Science Int., Harrow, UK, 2005).Google Scholar
  4. 4.
    F. de Juan, A. G. Grushin, T. Morimoto, and J. E. Moore, Nat. Commun. 8, 15995 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    Q. Ma, S.-Y. Xu, C.-K. Chan, C.-L. Zhang, G. Chang, Y. Lin, W. Xie, T. Palacios, H. Lin, S. Jia, P. A. Lee, P. Jarillo-Herrero, and N. Gedik, Nat. Phys. 13, 842 (2017).CrossRefGoogle Scholar
  6. 6.
    B. Q. Lv, N. Xu, H. M. Weng, J. Z. Ma, P. Richard, X. C. Huang, L. X. Zhao, G. F. Chen, C. E. Matt, F. Bisti, V. N. Strocov, J. Mesot, Z. Fang, X. Dai, T. Qian, M. Shi, and H. Ding, Nat. Phys. 11, 724 (2015).CrossRefGoogle Scholar
  7. 7.
    H. Weng, Ch. Fang, Zh. Fang, B. A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015).Google Scholar
  8. 8.
    Yan Sun, Shu-Chun Wu, and Binghai Yan, Phys. Rev. B 92, 115428 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    J. Buckeridge, D. Jevdokimovs, C. R. A. Catlow, and A. A. Sokol, Phys. Rev. B 93, 125205 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    Y. Zhou, P. Lu, Y. Du, X. Zhu, G. Zhang, R. Zhang, D. Shao, X. Chen, X. Wang, M. Tian, Jian Sun, X. Wan, Zh. Yang, W. Yang, Y. Zhang, and D. Xing, Phys. Rev. Lett. 117, 146402 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    D. Grassano, O. Pulci, A. M. Conte, and F. Bechstedt, Sci. Rep. 8, 3534 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    Yu-Hsin Su, Wujun Shi, C. Felser, and Yan Sun, Phys. Rev. B 97, 155431 (2018).ADSCrossRefGoogle Scholar
  13. 13.
    C.-K. Chan, N. H. Lindner, G. Refael, and P. A. Lee, Phys. Rev. B 95, 041104 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    L. E. Golub, E. L. Ivchenko, and B. Z. Spivak, JETP Lett. 105, 782 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    L. E. Golub and E. L. Ivchenko, Phys. Rev. B 98, 075305 (2018).ADSCrossRefGoogle Scholar
  16. 16.
    A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, and B. A. Bernevig, Nature (London, U.K.) 527, 495 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    June-Haak Ee, Dong-Won Jung, U-Rae Kim, and Jungil Lee, Eur. J. Phys. 38, 025801 (2017).CrossRefGoogle Scholar
  18. 18.
    Kai Sun, Shuai-Shuai Sun, Lin-Lin Wei, Cong Guo, Huan-Fang Tian, Gen-Fu Chen, Huai-Xin Yang, and Jian-Qi Li, Chin. Phys. Lett. 34, 117203 (2017).ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    L. P. Franca, Comput. Math. Appl. 18, 459 (1989).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • N. V. Leppenen
    • 1
    Email author
  • E. L. Ivchenko
    • 1
  • L. E. Golub
    • 1
  1. 1.Ioffe Physical–Technical Institute, Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations