Journal of Experimental and Theoretical Physics

, Volume 129, Issue 3, pp 413–420 | Cite as

Effect of Impurities on the Oxygen Adsorption Properties on the NiTi(110) Surface

  • A. V. BakulinEmail author
  • S. E. Kulkova


The effect of 3d–5d elements on the oxygen adsorption energy on the NiTi(110) surface has been studied by the projector augmented-waves method within density functional theory. It is shown that almost all elements, except for a few elements of the end of d periods, lead to an increase in the adsorption energy if they substitute for nickel. On the contrary, the substitutional impurities in the titanium sublattice lower this energy. Based on the analysis of the electronic characteristics of the surface with impurities, it has been found that an increase/decrease in the oxygen adsorption energy on NiTi(110) correlates with a change in the ionic contribution to the mechanism of oxygen bonding with the surface.



This work was supported by project III.23.2.8 of the Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of Sciences, and partly by the Russian Foundation for Basic Research (grant no. 18-03-00064_a) and Tomsk State University Competitiveness Improvement Program. Calculations were carried out using a supercomputer SKIF-Cyberia in Tomsk State University.


  1. 1.
    S. A. Shabalovskaya, J. Anderegg, and J. Van Humbeeck, Acta Biomater. 4, 447 (2008).CrossRefGoogle Scholar
  2. 2.
    H. Tian, D. Schryvers, D. Liu, et al., Acta Biomater. 7, 892 (2011).CrossRefGoogle Scholar
  3. 3.
    S. E. Kulkova, A. V. Bakulin, Q. M. Hu, et al., Phys. B (Amsterdam, Neth.) 426, 118 (2013).Google Scholar
  4. 4.
    A. V. Bakulin, T. I. Spiridonova, and S. E. Kulkova, Comput. Mater. Sci. 148, 1 (2018).CrossRefGoogle Scholar
  5. 5.
    V. G. Pushin, V. V. Kondrat’ev, and V. N. Khachin, Transients and Martensitic Transformations (UrO RAN, Yekaterinburg, 1998) [in Russian].Google Scholar
  6. 6.
    P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).ADSCrossRefGoogle Scholar
  7. 7.
    G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    G. Kresse and J. Hafner, Phys. Rev. B 48, 13115 (1993).ADSCrossRefGoogle Scholar
  9. 9.
    G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).CrossRefGoogle Scholar
  10. 10.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).ADSCrossRefGoogle Scholar
  11. 11.
    H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    E. A. Brandes and G. B. Brook, Smithells Metals Reference Book, 7th ed. (Butterworth–Heinemen, London, 1992).Google Scholar
  13. 13.
    M. Nolan and S. A. M. Tofail, Biomaterials 31, 3439 (2010).CrossRefGoogle Scholar
  14. 14.
    A. V. Bakulin, S. E. Kulkova, Q. M. Hu, and R. Yang, J. Exp. Theor. Phys. 120, 257 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    M. Pohl, T. Glogowski, S. Kühn, et al., Mater. Sci. Eng. A 481482, 123 (2008).Google Scholar
  16. 16.
    W. Tang, E. Sanville, and G. Henkelman, J. Phys.: Condens. Matter 21, 084204 (2009).ADSGoogle Scholar
  17. 17.
    N. G. Limas and T. A. Manz, RSC Adv. 6, 45727 (2016).CrossRefGoogle Scholar
  18. 18.
    T. A. Manz and N. G. Limas, RSC Adv. 6, 47771 (2016).CrossRefGoogle Scholar
  19. 19.
    A. V. Bakulin and S. E. Kulkova, J. Exp. Theor. Phys. 127, 1046 (2018).ADSCrossRefGoogle Scholar
  20. 20.
    S. E. Kulkova, A. V. Bakulin, Q. M. Hu, et al., Mater. Today: Proc. 2S, 615 (2015).Google Scholar
  21. 21.
    B. Hammer and J. K. Nørskov, Surf. Sci. 343, 211 (1995).ADSCrossRefGoogle Scholar
  22. 22.
    V. E. Egorushkin, S. E. Kul’kova, N. V. Mel’nikova, and A. N. Ponomarev, J. Exp. Theor. Phys. 101, 350 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    R. Dronskowski and P. E. Blöchl, J. Phys. Chem. 97, 8617 (1993).CrossRefGoogle Scholar
  24. 24.
    S. Maintz, V. L. Deringer, A. L. Tchougreeff, et al., J. Comput. Chem. 37, 1030 (2016).CrossRefGoogle Scholar
  25. 25.
    S. E. Kulkova, A. V. Bakulin, S. S. Kulkov, et al., Phys. Scr. 90, 094010 (2015).ADSCrossRefGoogle Scholar
  26. 26.
    F. P. Ping, Q. M. Hu, A. V. Bakulin, et al., Intermet. 68, 57 (2016).CrossRefGoogle Scholar
  27. 27.
    G. S. Firstov, R. G. Vitchev, H. Kumar, et al., Biomaterials 23, 4863 (2008).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.National Research Tomsk State UniversityTomskRussia

Personalised recommendations