Magnetic and Resistive Properties of Magnetite/Iridate Heterostructures

  • T. A. ShaikhulovEmail author
  • G. A. Ovsyannikov
  • V. V. Demidov
  • N. V. Andreev


A technique is developed to grow epitaxial heterostructures consisting of strontium iridate (SrIrO3) and lanthanum–strontium manganite (La0.7Sr0.3MnO3). Their transport properties and ferromagnetic resonance spectra are measured. The parameters obtained are compared with the properties of individual iridate and manganite films. The results of resistive measurements point to conduction of the iridate/manganite interface. As temperature decreases, the ferromagnetic resonance line width increases and the resonance field decreases, which indicates the appearance of additional ferromagnetic ordering in the heterostructures.



We thank V.A. Atsarkin, A.L. Klimov, A.M. Petrzhik, and T.A. Sviridova for useful discussions and their help in the experiments.


This work was performed under State assignment and supported in part by the Russian Foundation for Basic Research, project nos. 19-07-00143 and 17-02-00145.


This work was based on our report for the XXXVIII Conference on Low-Temperature Physics (NT-38).


  1. 1.
    N. G. Bebenin, R. I. Zainullina, and V. V. Ustinov, Phys. Usp. 61, 719 (2018).ADSCrossRefGoogle Scholar
  2. 2.
    L. Zhang, B. Pang, Y. B. Chen, and Y. Chen, Crit. Rev. Sol. St. Mater. Sci. 43, 367 (2018).CrossRefGoogle Scholar
  3. 3.
    D. Pesin and L. Balents, Nat. Phys. 6, 376 (2010).CrossRefGoogle Scholar
  4. 4.
    F. Wang and T. Senthil, Phys. Rev. Lett. 106, 136402 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    D. Xiao, W. Zhu, Y. Ran, et al., Nat. Commun. 2, 596 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    T. Seki, Yu. Hasegawa, S. Mitani, et al., Nat. Mater. 7, 125 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    E. Saitoh, M. Ueda, H. Miyajima, and G. Tatara, Appl. Phys. Lett. 88, 182509 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    X. L. Qi, T. L. Hughes, and S. C. Zhang, Phys. Rev. B 78, 95424 (2008).Google Scholar
  9. 9.
    A. Manchon, H. C. Koo, J. Nitta, et al., Nat. Mater. 14, 871 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    V. V. Demidov, I. V. Borisenko, A. A. Klimov, G. A. Ovsyannikov, A. M. Petrzhik, and S. A. Nikitov, J. Exp. Theor. Phys. 112, 825 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    Yu. V. Kislinskii, G. A. Ovsyannikov, A. M. Petrzhik, K. Y. Constantinian, N. V. Andreev, and T. A. Sviridova, Phys. Solid State 57, 2519 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    E. Dagotto, Science (Washington, DC, U. S.) 309, 257 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    S. Thiel, G. Hammer, A. Schmehl, et al., Science (Washington, DC, U. S.) 313, 1942 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    M. Longo, J. A. Kafalas, and R. J. Arnott, J. Solid State Chem. 3, 174 (1971).ADSCrossRefGoogle Scholar
  15. 15.
    V. V. Demidov and G. A. Ovsyannikov, J. Appl. Phys. 122, 013902 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    N. M. Kreines, D. I. Kholin, and S. O. Demokritov, J. Low Temp. Phys. 38, 826 (2012).CrossRefGoogle Scholar
  17. 17.
    J. Nichols, X. Gao, S. Lee, et al., Nat. Commun. 7, 12721 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    Di Yi, C. L. Flint, and P. P. Balakrishnan, Phys. Rev. Lett. 119, 077201 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    D. Yi, J. Liu, Sh.-L. Hsu, L. Zhang, et al., Proc. Nat. Acad. Sci. 113, 6397 (2016).Google Scholar
  20. 20.
    D. Yi, Ch. L. Flint, P. P. Balakrishnan, et al., PRL 119, 077201 (2017).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • T. A. Shaikhulov
    • 1
    Email author
  • G. A. Ovsyannikov
    • 1
  • V. V. Demidov
    • 1
  • N. V. Andreev
    • 2
  1. 1.Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of SciencesMoscowRussia
  2. 2.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations