Skip to main content
Log in

Description of Emission Processes in Molecular Gases Based with the HITRAN Database

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Methods for calculating the emission characteristics of a molecular gas in vibrational–rotational transitions involving information collected in the HITRAN database have been discussed. It has been shown that a series of vibrational–rotational transitions induced by the absorption of photons by CO2 molecules lead to the formation of unstable autoionizing states. Algorithms for calculating the partial absorption coefficients and radiation fluxes from the bulk of the molecular gas have been developed involving the HITRAN database. Advantages and disadvantages of this approach for calculating the emission characteristics of molecular gas layers have been discussed. The results have been demonstrated in application to carbon dioxide and methane in the Earth’s atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand Reinhold, Princeton, 1945).

    Google Scholar 

  2. H. C. Allen and P. C. Cross, Molecular Vibrotors; The Theory and Interpretation of High Resolution Infrared Spectra (Wiley, New York, 1963).

    MATH  Google Scholar 

  3. M. A. El’yashevich, Molecular Spectroscopy (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  4. C. N. Banwell and E. M. McCash, Fundamentals of Molecular Spectroscopy (McGraw-Hill, London, 1994).

    Google Scholar 

  5. V. P. Krainov, H. R. Reiss, and B. M. Smirnov, Radiative Processes in Atomic Physics (Wiley, New York, 1997).

    Book  Google Scholar 

  6. S. V. Khristenko, A. I. Maslov, and V. P. Shevelko, Molecules and their Spectroscopic Properties (Springer, Berlin, 1998).

    Book  Google Scholar 

  7. V. P. Krainov and B. M. Smirnov, Quantum Theory of Atomic Particle Radiation (Intellekt, Dolgoprudnyi, 2015) [in Russian].

  8. https://en.wikipedia.org/wiki/Infraredspectroscopy.

  9. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1974, 3th ed.; Pergamon, New York, 1977, 3rd ed.).

  10. http:///www.hitran.iao.ru/home.

  11. http://www.hitran.org/links/.

  12. E. U. Condon and G. H. Shortley, The Theory of Atomic Spectra (Cambridge Univ. Press, Cambridge, 1970).

    MATH  Google Scholar 

  13. I. I. Sobelman, Atomic Spectra and Radiative Transitions (Springer, Berlin, 1979).

    Book  Google Scholar 

  14. F. Reif, Statistical and Thermal Physics (McGraw-Hill, Boston, 1965).

    Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).

  16. B. M. Smirnov, J. Exp. Theor. Phys. 126, 446 (2018).

    Article  ADS  Google Scholar 

  17. B. M. Smirnov, Physics of a Weakly Ionized Gas (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  18. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton Univ. Press, Princeton, NJ, 1957).

    Book  MATH  Google Scholar 

  19. B. M. Smirnov, J. Phys. D: Appl. Phys. 51, 214004 (2018).

    Article  ADS  Google Scholar 

  20. W. M. Elsasser, Phys. Rev. 54, 126 (1938).

    Article  ADS  Google Scholar 

  21. E. T. Whittaker and G. N. Watson, Modern Analysis (Cambridge Univ. Press, London, 1940).

    Google Scholar 

  22. R. M. Goody, Atmospheric Radiation: Theoretical Basis (Oxford Univ. Press, London, 1964).

    Google Scholar 

  23. B. M. Smirnov and G. V. Shlyapnikov, Sov. Phys. Usp. 23, 179 (1980).

    Article  ADS  Google Scholar 

  24. R. M. Goody and Y. L. Yung, Atmospheric Radiation: Theoretical Basis (Oxford Univ. Press, New York, 1989).

    Google Scholar 

  25. B. M. Smirnov, Plasma Processes and Plasma Kinetics (Wiley, Berlin, 2007).

    Book  Google Scholar 

  26. U. S. Standard Atmosphere (U.S. Government Printing Office, Washington, 1976).

  27. G. Kirchhoff, Ann. Phys. Chem. 109, 275 (1860).

    Article  ADS  Google Scholar 

  28. https://www.esrl.noaa.gov/gmd/ccgg/trends-ch4/.

  29. L. S. Rothman, I. E. Gordon, R. J. Barber, H. Dothe, R. R. Gamache, A. Goldman, V. Perevalov, S. A. Tashkun, and J. Tennyson, J. Quant. Spectrosc. Radiat. Transfer 111, 2139 (2010).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Education and Science of the Russian Federation (project no. 3.873.2017/4.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Smirnov.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krainov, V.P., Smirnov, B.M. Description of Emission Processes in Molecular Gases Based with the HITRAN Database. J. Exp. Theor. Phys. 129, 9–18 (2019). https://doi.org/10.1134/S106377611906013X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611906013X

Navigation