Relationship between Surface Self-Diffusion and Bubble Mobility in Solids: Theory and Atomistic Simulation

Abstract

Diffusion processes in solids are characterized by complex mechanisms occurring at the atomistic level. The relevant theoretical concepts are sufficiently developed in the case of the diffusion of point defects. At the same time, the diffusion of objects such as clusters of vacancies or nanometer-size cavities in the crystal lattice is described only in terms of continuous-medium approximation. This paper attempts to link the existing theory of diffusion of bubbles in a crystalline matrix with the atomistic description of the process on the basis of the molecular dynamics method. For simplicity, the diffusion of cavities in a two-dimensional Lennard-Jones lattice is considered. A controlled molecular dynamics method is proposed to speed up the direct computation of the diffusion rate of bubbles. Based on the results of simulation, a practical interpretation is given to a parameter of the continuum theory such as the rate of surface self-diffusion. The applicability range of the continuum theory is demonstrated, and principles for the refinement of the theory in the case of minimum-size bubbles are formulated.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. 1

    X. Zhang, B. Grabowski, T. Hickel, and J. Neugebauer, Comput. Mater. Sci. 148, 249 (2018).

    Article  Google Scholar 

  2. 2

    J. Rest and S. Zawadzki, A Mechanistic Model for the Prediction of Xe, I, Cs, Te, Ba, and Sr Release from Nuclear Fuel under Normal and Severe-Accident Conditions (Argonne Natl. Laboratory, USA, 1992).

    Book  Google Scholar 

  3. 3

    M. Veshchunov, V. Ozrin, V. Shestak, V. Tarasov, R. Dubourg, and G. Nicaise, Nucl. Eng. Des. 236, 179 (2006).

    Article  Google Scholar 

  4. 4

    M. Veshchunov, A. Boldyrev, A. Kuznetsov, V. Ozrin, M. Seryi, V. Shestak, V. Tarasov, G. Norman, A. Kuksin, and V. Pisarev, Nucl. Eng. Des. 295, 116 (2015).

    Article  Google Scholar 

  5. 5

    K. Morishita and R. Sugano, Nucl. Instrum. Methods Phys. Res., Sect. B 255, 52 (2007).

    Google Scholar 

  6. 6

    D. Schwen and R. Averback, J. Nucl. Mater. 402, 116 (2010).

    ADS  Article  Google Scholar 

  7. 7

    P. Trocellier, S. Agarwal, and S. Miro, J. Nucl. Mater. 445, 128 (2014).

    ADS  Article  Google Scholar 

  8. 8

    A. Antropov, V. Ozrin, G. Smirnov, V. Stegailov, and V. Tarasov, J. Phys.: Conf. Ser. 1133, 012029 (2018).

    Google Scholar 

  9. 9

    L. Willertz and P. Shewmon, Metall. Trans. 1, 2217 (1970).

    Article  Google Scholar 

  10. 10

    E. Mikhlin, J. Nucl. Mater. 87, 405 (1979).

    ADS  Article  Google Scholar 

  11. 11

    C. Liu, J. Cohen, J. Adams, and A. Voter, Surf. Sci. 253, 334 (1991).

    ADS  Article  Google Scholar 

  12. 12

    N. Gjostein and J. Hirth, Acta Metall. 13, 991 (1965).

    Article  Google Scholar 

  13. 13

    J. Hannon, C. Klünker, M. Giesen, H. Ibach, N. Bartelt, and J. Hamilton, Phys. Rev. Lett. 79, 2506 (1997).

    ADS  Article  Google Scholar 

  14. 14

    A. Kapoor, R. Yang, and C. Wong, Catal. Rev. Sci. Eng. 31, 129 (1989).

    Article  Google Scholar 

  15. 15

    E. Gruber, J. Appl. Phys. 38, 243 (1967).

    ADS  Article  Google Scholar 

  16. 16

    Ya. Geguzin and M. Krivoglaz, Motion of Macroscopic Inclusions in Solids (Metallurgiya, Moscow, 1971) [in Russian].

    Google Scholar 

  17. 17

    J. Caillol, J. Phys. A 37, 3077 (2004).

    ADS  MathSciNet  Article  Google Scholar 

  18. 18

    M. Veshchunov and V. Shestak, J. Nucl. Mater. 376, 174 (2008).

    ADS  Article  Google Scholar 

Download references

Funding

The work of A.S.A. and V.V.S. was supported by the Government of the Russian Federation (contract no. 074-02-2018-286) and by the Russian Foundation for Basic Research (project no. 18-08-01495).

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. S. Antropov.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antropov, A.S., Ozrin, V.D., Stegailov, V.V. et al. Relationship between Surface Self-Diffusion and Bubble Mobility in Solids: Theory and Atomistic Simulation. J. Exp. Theor. Phys. 129, 103–111 (2019). https://doi.org/10.1134/S1063776119060098

Download citation