Advertisement

Jahn–Teller Distortions of Metal Phthalocyanine Anions [MIVOPc]n (M = Ti, V)

  • A. V. KuzminEmail author
  • S. S. Khasanov
  • K. P. Meletov
  • R. P. Shibaeva
SOLIDS AND LIQUIDS
  • 8 Downloads

Abstract

Based on X-ray diffraction data, a comparative analysis of the molecular geometry of eight phthalocyanine anions [TiIVOPc]n, [VIVOPc]n (n = 1, 2) and neutral phthalocyanines [TiIVOPc] and [VIVOPc] is carried out to study Jahn–Teller distortions of their molecular structure. It is experimentally shown that the occupation of a doubly degenerate lowest unoccupied molecular orbital of the [MIVOPc] molecule level by additional electrons leads to core tetragonal symmetry lowering from \({{C}_{{4{v}}}}\) to \({{C}_{{2{v}}}}\) with a significant change in the bond lengths distribution in the molecule. The effect manifests itself to a greater extent in imine bonds of the C–Nim–C fragment, in which a systemic alternation of bonds into short and long is observed. The degree of distortion is proportional to the charge of the metal phthalocyanine macrocycle of the organic part of the molecule, C32H16N8. The Jahn–Teller distortions of the macrocycle noticeably affect the position of frequencies characteristic of [MIVOPc] in the Raman spectra of single crystals of anionic phthalocyanine complexes in the range 1100–1700 cm–1. The experimental patterns agree fairly well with the results of DFT calculations.

Notes

ACKNOWLEDGMENTS

The authors are grateful to D.V. Konarev for providing samples of metal phthalocyanine complexes and discussion of the results.

FUNDING

This work was carried out in the framework of the state assignment of the Institute of Solid State Physics, Russian Academy of Sciences with partial support by the Russian Foundation for Basic Research (grant no. 18-33-00731).

REFERENCES

  1. 1.
    K. I. Kugel’ and D. I. Khomskii, Sov. Phys. Usp. 25, 231 (1982).Google Scholar
  2. 2.
    I. B. Bersuker, The Jahn-Teller Effect (Cambridge Univ. Press, Cambridge, 2006).CrossRefGoogle Scholar
  3. 3.
    A. J. Millis, P. B. Littlewood, and B. I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    H. Röder, J. Zang, and A. R. Bishop, Phys. Rev. Lett. 76, 1356 (1996).ADSCrossRefGoogle Scholar
  5. 5.
    E. Dagotto, Nanoscale Phase Separation and Colossal Magnetoresistance, Springer Ser. Solid State Sci. (Springer, Berlin, Heidelberg, 2002).Google Scholar
  6. 6.
    J. Xue, S. Uchida, B. Rand, et al., Appl. Phys. Lett. 85, 5757 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    J. Robertson, A. Smith, J. Duignan, et al., Appl. Phys. Lett. 78, 1183 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    D. Hohnholz, S. Steinbrecher, and M. Hanack, J. Mol. Struct. 521, 231 (2000).ADSCrossRefGoogle Scholar
  9. 9.
    D. Wöhrle, Adv. Mater. 5, 942 (1993).CrossRefGoogle Scholar
  10. 10.
    T. Inabe and H. Tajima, Chem. Rev. 104, 5503 (2004).CrossRefGoogle Scholar
  11. 11.
    D. E. C. Yu, M. Matsuda, H. Tajima, et al., J. Mater. Chem. 19, 718 (2009).CrossRefGoogle Scholar
  12. 12.
    O. Okada, K. Oka, and M. Iijima, Jpn. J. Appl. Phys. 32, 3556 (1993).ADSCrossRefGoogle Scholar
  13. 13.
    A. J. Ramadan, L. A. Rochford, D. S. Keeble, et al., J. Mater. Chem. C 3, 461 (2014).CrossRefGoogle Scholar
  14. 14.
    C. R. Groom, I. J. Bruno, M. P. Lightfoot, et al., Acta Crystallogr., B 72, 171 (2016).CrossRefGoogle Scholar
  15. 15.
    D. V. Konarev, A. V. Kuzmin, M. A. Faraonov, et al., Chem. – Eur. J. 21, 1014 (2015).CrossRefGoogle Scholar
  16. 16.
    D. V. Konarev, A. V. Kuzmin, S. S. Khasanov, et al., Cryst. Eng. Commun. 20, 385 (2018).CrossRefGoogle Scholar
  17. 17.
    D. V. Konarev, A. V. Kuzmin, S. S. Khasanov, et al., Chem. - Asian J. 13, 1552 (2018).CrossRefGoogle Scholar
  18. 18.
    D. V. Konarev, M. A. Faraonov, A. V. Kuzmin, et al., New J. Chem. 41, 6866 (2017).CrossRefGoogle Scholar
  19. 19.
    L. Andjelkovic, S. Stepanovic, F. Vlahovic, et al., Phys. Chem. Chem. Phys. 18, 29122 (2016).CrossRefGoogle Scholar
  20. 20.
    M. G. Cory, H. Hirose, and M. C. Zerner, Inorg. Chem. 34, 2969 (1995).CrossRefGoogle Scholar
  21. 21.
    A. A. Granovsky, Firefly, Version 8.Google Scholar
  22. 22.
    R. A. Kendall, T. H. Dunning, and R. J. Harrison, J. Chem. Phys. 96, 6796 (1992).ADSCrossRefGoogle Scholar
  23. 23.
    P. J. Hay and W. R. Wadt, J. Chem. Phys. 82, 270 (1985).ADSCrossRefGoogle Scholar
  24. 24.
    J. Tóbik and E. Tosatti, J. Phys. Chem. A 111, 12570 (2007).CrossRefGoogle Scholar
  25. 25.
    J. Tóbik and E. Tosatti, J. Surf. Sci. 600, 3995 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    H.-L. Gao, F. Chen, G. Yao, et al., Chin. J. Chem. Phys. 26, 504 (2013).CrossRefGoogle Scholar
  27. 27.
    S. Dong, C. Bao, H. Tian, et al., Adv. Mater. 25, 1165 (2013).CrossRefGoogle Scholar
  28. 28.
    D. R. Tackley, G. Dent, W. Ewen Smith, et al., Phys. Chem. Chem. Phys. 3, 1419 (2001).CrossRefGoogle Scholar
  29. 29.
    D. R. Tackley, G. Dent, and W. Ewen Smith, Phys. Chem. Chem. Phys. 2, 3949 (2000).CrossRefGoogle Scholar
  30. 30.
    T. V. Basova, V. G. Kiselev, B.-E. Schuster, et al., J. Raman Spectrosc. 40, 2080 (2009).ADSCrossRefGoogle Scholar
  31. 31.
    R. C. Haddon, A. F. Hebard, M. J. Rosseinsky, et al., Nature (London, U.K.) 350, 320 (1991).ADSCrossRefGoogle Scholar
  32. 32.
    H. Kuzmany, M. Matus, B. Burger, et al., Adv. Mater. 6, 731 (1994).CrossRefGoogle Scholar
  33. 33.
    D. V. Konarev, A. V. Kuzmin, M. Ishikawa, et al., Eur. J. Inorg. Chem. 2014, 3863 (2014).CrossRefGoogle Scholar
  34. 34.
    R. D. Johnson, NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database No. 101 (Natl. Inst. Standards Technol., 2012).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  • A. V. Kuzmin
    • 1
    Email author
  • S. S. Khasanov
    • 1
  • K. P. Meletov
    • 1
  • R. P. Shibaeva
    • 1
  1. 1.Institute of Solid State Physics, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations