Metal–Insulator Transition in the Presence of Van Hove Singularities for Bipartite Lattices

  • P. A. Igoshev
  • V. Yu. IrkhinEmail author


We have considered the phase diagram of the ground state for the tt' Hubbard model with half-filling of the band. The criterion for the metal–insulator transition has been formulated using the analytic expansion in transfer integral t' and in direct antiferromagnetic gap Δ. For a square lattice, there exists an interval of t' values for which the metal–insulator transition is of the first order due to the existence of the Van Hove singularity. For simple and body-centered cubic lattices, a transition occurring from the insulator antiferromagnetic state to the antiferromagnetic metal phase is a second-order transition followed by a transition to paramagnetic metal.



The authors are grateful to M.A. Timirgazin, Yu.N. Skryabin, and A.O. Anokhin for fruitful discussions.


This work was performed under the State assignment of the Federal Agency of Scientific Organization of the Russian Federation (project “Quantum” no. AAAA-A18-118020190095-4).

This article was prepared in accordance with the results of the XXXVIII Conference on Low-Temperature Physics (NT-38).


  1. 1.
    N. F. Mott, Metal-Insulator Transitions (Nauka, Moscow, 1979; Taylor Francis, London, 1974).Google Scholar
  2. 2.
    M. Imada, A. Fujimori, and Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998).ADSCrossRefGoogle Scholar
  3. 3.
    T. Das, R. S. Markiewicz, and A. Bansil, Adv. Phys. 63, 151 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    P. A. Igoshev, A. A. Katanin, and V. Yu. Irkhin, J. Exp. Theor. Phys. 105, 1043 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    P. A. Igoshev, M. A. Timirgazin, A. A. Katanin, A. K. Arzhnikov, and V. Yu. Irkhin, Phys. Rev. B 81, 094407 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    M. A. Timirgazin, P. A. Igoshev, V. F. Gilmutdinov, A. K. Arzhnikov, and V. Yu. Irkhin, J. Phys.: Condens. Matter 27, 446002 (2015).ADSGoogle Scholar
  7. 7.
    P. A. Igoshev, E. E. Kokorina, and I. A. Nekrasov, Phys. Met. Metallogr. 118, 207 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    M. I. Katsnelson and V. Yu. Irkhin, J. Phys. C 17, 4291 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    M. A. Timirgazin, P. A. Igoshev, A. K. Arzhnikov, and V. Yu. Irkhin, J. Low Temp. Phys. 185, 651 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    M. A. Timirgazin, P. A. Igoshev, A. K. Arzhnikov, and V. Yu. Irkhin, J. Phys.: Condens. Matter 28, 505601 (2016).Google Scholar
  11. 11.
    W. F. Brinkman and T. M. Rice, Phys. Rev. B 2, 4302 (1970).ADSCrossRefGoogle Scholar
  12. 12.
    D. Duffy and A. Moreo, Phys. Rev. B 55, R676 (1997).ADSCrossRefGoogle Scholar
  13. 13.
    Z.-Q. Yu and L. Yin, Phys. Rev. B 81, 195122 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    I. Yang, E. Lange, and G. Kotliar, Phys. Rev. B 61, 2521 (2000).ADSCrossRefGoogle Scholar
  15. 15.
    G. Kotliar and A. E. Ruckenstein, Phys. Rev. Lett. 57, 1362 (1986).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    R. Fresard and P. Wölfle, J. Phys.: Condens. Matter 4, 3625 (1992).ADSGoogle Scholar
  17. 17.
    R. J. Jelitto, J. Phys. Chem. Solids 30, 609 (1969).ADSCrossRefGoogle Scholar
  18. 18.
    S. Katsura and T. Horiguchi, J. Math. Phys. 12, 230 (1971).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations