Skip to main content
Log in

The s-Channel Single Top Quark Production as a Constraint for W ' Boson Contribution

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An analysis is performed to constrain the W' boson production using the measurement of the s‑channel single top quark production cross section. Both phenomenological and statistical approaches are examined and results are presented. In the best case, W' bosons that interact only to the right-handed fermions are excluded below 1390 GeV. To our knowledge, it is the first time that the measured cross section of the s-channel single top quark production from the colliders is used to rule out a part of the phase space of the W' boson.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. K. Hsieh, K. Schmitz, J.-H. Yu, and C. P. Yuan, Phys. Rev. D 82, 035011 (2010); arXiv: 1003.3482.

    Article  ADS  Google Scholar 

  2. G. Burdman, B. A. Dobrescu, and E. Ponton, Phys. Rev. D 74, 075008 (2006); hep-ph/0601186.

    Article  ADS  Google Scholar 

  3. Z. Sullivan, Phys. Rev. D 66, 075011 (2002); hep-ph/0207290.

    Article  ADS  Google Scholar 

  4. D. Duffty and Z. Sullivan, Phys. Rev. D 86, 075018 (2012); arXiv: 1208.4858.

    Article  ADS  Google Scholar 

  5. G. Altarelli, B. Mele, and M. Ruiz-Altaba, Z. Phys. C 45, 109 (1989);

    Article  Google Scholar 

  6. Z. Phys. C 47, 676(E) (1990).

  7. S. Chatrchyan et al. (CMS Collab.), J. Instrum. 3, S08004 (2008).

    Google Scholar 

  8. V. Khachatryan et al. (CMS Collab.), Phys. Lett. B 770, 278 (2017); arXiv: 1612.09274.

  9. G. Aad et al. (ATLAS Collab.), J. Instrum. 3, S08003 (2008).

    Article  Google Scholar 

  10. M. Aaboud et al. (ATLAS Collab.), Eur. Phys. J. C 78, 401 (2018); arXiv: 1706.04786.

  11. V. Khachatryan et al. (CMS Collab.), J. High Energy Phys. 03, 077 (2017); arXiv: 1612.01190.

  12. G. Aad et al. (ATLAS Collab.), Phys. Lett. B 743, 235 (2015); arXiv: 1410.4103.

    Article  ADS  Google Scholar 

  13. A. M. Sirunyan, et al. (CMS Collab.), Phys. Lett. B 777, 39 (2018); arXiv: 1708.08539.

  14. A. M. Sirunyan, et al. (CMS Collab.), J. High Energy Phys. 08, 029 (2017); arXiv: 1706.04260.

  15. E. Boos, V. Bunichev, L. Dudko, and M. Perlov, Phys. Lett. B 655, 245 (2007); hep-ph/0610080.

    Article  ADS  Google Scholar 

  16. E. Drueke, J. Nutter, R. Schwienhorst, N. Vignaroli, D. G. E. Walker, and J.-H. Yu, Phys. Rev. D 91, 054020 (2015); arXiv: 1409.7607.

    Article  ADS  Google Scholar 

  17. T. M. P. Tait and C. P. Yuan, Phys. Rev. D 63, 014018 (2000); hep-ph/0007298.

    Article  ADS  Google Scholar 

  18. S. Yaser Ayazi and M. Mohammadi Najafabadi, J. Phys. G 38, 085002 (2011); arXiv: 1006.2647.

    Article  ADS  Google Scholar 

  19. S. Paktinat Mehdiabadi and L. Zamiri, J. Phys. G 45, 055004 (2018); arXiv: 1710.05153.

  20. V. Khachatryan et al. (CMS Collab.), J. High Energy Phys. 04, 018 (2017); arXiv: 1610.04870.

  21. T. A. Aaltonen et al. (CDF, D0 Collabs.), Phys. Rev. Lett. 112, 231803 (2014); arXiv: 1402.5126.

    Article  ADS  Google Scholar 

  22. G. Aad et al. (ATLAS Collab.), Phys. Lett. B 756, 228 (2016); arXiv: 1511.05980.

  23. H.-L. Lai, J. Huston, Z. Li, P. Nadolsky, J. Pumplin, D. Stump, and C. P. Yuan, Phys. Rev. D 82, 054021 (2010); arXiv: 1004.4624.

    Article  ADS  Google Scholar 

  24. V. M. Abazov et al. (D0 Collab.), Phys. Rev. Lett. 100, 211803 (2008); arXiv: 0803.3256.

    Article  ADS  Google Scholar 

  25. T. Aaltonen et al. (CDF Collab.), Phys. Rev. Lett. 103, 041801 (2009); arXiv: 0902.3276.

    Article  ADS  Google Scholar 

  26. V. Khachatryan et al. (CMS Collab.), J. High Energy Phys. 09, 027 (2016); arXiv: 1603.02555.

  27. V. M. Abazov et al. (D0 Collab.), Phys. Lett. B 726, 656 (2013); arXiv: 1307.0731.

    Article  ADS  Google Scholar 

  28. T. A. Aaltonen et al. (CDF Collab.), Phys. Rev. Lett. 115, 061801 (2015); arXiv: 1504.01536.

  29. G. Aad et al. (ATLAS Collab.), ATLAS-CONF-2011-118 (2011).

  30. R. Brun and F. Rademakers, Nucl. Instrum. Methods Phys. Res., Sect. A 389, 81 (1997).

    Google Scholar 

  31. V. Khachatryan et al. (CMS Collab.), J. High Energy Phys. 02, 122 (2016); arXiv: 1509.06051.

Download references

ACKNOWLEDGMENTS

The authors would like to thank the school of particles and accelerators at IPM for their hospitality. The authors are grateful to CMS and ATLAS collaborations for their fantastic measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Ya. Ayazi or S. P. Mehdiabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayazi, S.Y., Mehdiabadi, S.P. The s-Channel Single Top Quark Production as a Constraint for W ' Boson Contribution. J. Exp. Theor. Phys. 128, 865–870 (2019). https://doi.org/10.1134/S1063776119050091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119050091

Navigation