Skip to main content
Log in

Strong Spin–Charge Coupling and Its Manifestation in the Quasiparticle Structure, Cooper Instability, and Electromagnetic Properties of Cuprates

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The Fermi excitation spectrum, the problem of Cooper instability, and the Londons magnetic field penetration depth in cuprate superconductors are considered using the unified conception based on accounting for the strong coupling between the spin of copper ions and holes at oxygen ions. This coupling leads to strong renormalization of the primary spectrum of oxygen holes with the formation of spin-polaron quasiparticles. Analysis of Cooper instability performed using the spin-polaron concept for different channels has shown that only the superconducting d-wave pairing occurs in the ensemble of spin-polaron quasiparticles, and there are no solutions corresponding to the s-wave pairing. It has been demonstrated that the superconducting d-wave pairing is not suppressed by the Coulomb repulsion of holes located at neighboring oxygen ions. This effect is due to peculiarities in the crystallographic structure of the CuO2 plane and the aforementioned strong spin–fermion coupling. As a result, such interaction of holes is omitted in the kernel of the integral equation for the superconducting order parameter with the d-wave symmetry. It has been shown the Hubbard repulsion of holes and their interaction for the second coordination sphere of the oxygen sublattice for actual intensities of the interaction do not suppress the d-wave type of superconductivity. For the spin-polaron ensemble, we have analyzed the dependence of the Londons magnetic field penetration depth on the temperature and hole concentration. It has been established that the peculiarities of this dependence are closely related to specific features of the spin-polaron spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCE

  1. V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987).

    Article  ADS  Google Scholar 

  2. C. M. Varma, S. Schmitt-Rink, and E. Abrahams, Solid State Commun. 62, 681 (1987).

    Article  ADS  Google Scholar 

  3. Yu. B. Gaididei and V. M. Loktev, Phys. Status Solidi B 147, 307 (1988).

    Article  ADS  Google Scholar 

  4. J. C. Hubbard, Proc. R. Soc. London, Ser. A 285, 542 (1965).

    Article  ADS  Google Scholar 

  5. A. F. Barabanov, L. A. Maksimov, and G. V. Uimin, JETP Lett. 47, 622 (1988);

    ADS  Google Scholar 

  6. Sov. Phys. JETP 69, 371 (1989).

  7. P. Prelovšek, Phys. Lett. A 126, 287 (1988).

    Article  ADS  Google Scholar 

  8. J. Zaanen and A. M. Oleś, Phys. Rev. B 37, 9423 (1988).

    Article  ADS  Google Scholar 

  9. E. B. Stechel and D. R. Jennison, Phys. Rev. B 38, 4632 (1988).

    Article  ADS  Google Scholar 

  10. V. J. Emery and G. Reiter, Phys. Rev. B 38, 4547 (1988).

    Article  ADS  Google Scholar 

  11. H. Matsukawa and H. Fukuyama, J. Phys. Soc. Jpn. 58, 2845 (1989).

    Article  ADS  Google Scholar 

  12. K. M. Shen, F. Ronning, D. H. Lu, F. Baumberger, N. J. C. Ingle, W. S. Lee, W. Meevasana, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, and Z.-X. Shen, Science (Washington, DC, U. S.) 307, 901 (2005).

    Article  ADS  Google Scholar 

  13. M. Vojta, Adv. Phys. 58, 699 (2009).

    Article  ADS  Google Scholar 

  14. B. Keimer, S. A. Kivelson, M. R. Norman, S. Uchida, and J. Zaanen, Nature (London, U.K.) 518, 179 (2015).

    Article  ADS  Google Scholar 

  15. N. M. Plakida, Phys. C (Amsterdam, Neth.) 531, 39 (2016).

  16. N. E. Hussey, Adv. Phys. 51, 1685 (2002).

    Article  ADS  Google Scholar 

  17. A. F. Barabanov, V. M. Berezovskii, E. Zhasinas, and L. A. Maksimov, J. Exp. Theor. Phys. 83, 819 (1996).

    ADS  Google Scholar 

  18. A. F. Barabanov, R. O. Kuzian, and L. A. Maksimov, Phys. Rev. B 55, 4015 (1997).

    Article  ADS  Google Scholar 

  19. B. Lau, M. Berciu, and G. A. Sawatzky, Phys. Rev. Lett. 106, 036401 (2011).

    Article  ADS  Google Scholar 

  20. A. F. Barabanov, L. A. Maksimov, and A. V. Mikheyenkov, AIP Conf. Proc. 527, 1 (2000).

    Article  ADS  Google Scholar 

  21. A. F. Barabanov, A. A. Kovalev, O. V. Urazaev, A. M. Belemuk, and R. Khain, J. Exp. Theor. Phys. 92, 677 (2001).

    Article  ADS  Google Scholar 

  22. A. F. Barabanov, A. V. Mikheenkov, and A. M. Belemuk, JETP Lett. 75, 107 (2002).

    Article  ADS  Google Scholar 

  23. L. A. Maksimov, A. F. Barabanov, and R. O. Kuzian, Phys. Lett. A 232, 286 (1997).

    Article  ADS  Google Scholar 

  24. L. A. Maksimov, R. Hayn, and A. F. Barabanov, Phys. Lett. A 238, 288 (1998).

    Article  ADS  Google Scholar 

  25. A. F. Barabanov, A. A. Kovalev, O. V. Urazaev, and A. M. Belemouk, Phys. Lett. A 265, 221 (2000).

    Article  ADS  Google Scholar 

  26. A. P. Kampf and J. R. Schrieffer, Phys. Rev. B 42, 7967 (1990).

    Article  ADS  Google Scholar 

  27. D. M. Dzebisashvili, V. V. Val’kov, and A. F. Barabanov, JETP Lett. 98, 528 (2013).

    Article  ADS  Google Scholar 

  28. T. Yoshida, X. J. Zhou, D. H. Lu, S. Komiya, Y. Ando, H. Eisaki, T. Kakeshita, S. Uchida, Z. Hussain, and Z.‑X. Shen, J. Phys.: Condens. Matter 19, 125209 (2007).

    ADS  Google Scholar 

  29. A. F. Barabanov, L. A. Maksimov, and A. V. Mikheenkov, JETP Lett. 74, 328 (2001).

    Article  ADS  Google Scholar 

  30. V. V. Val’kov, M. M. Korovushkin, and A. F. Barabanov, JETP Lett. 88, 370 (2008).

    Article  ADS  Google Scholar 

  31. V. V. Val’kov, T. A. Val’kova, D. M. Dzebisashvili, and S. G. Ovchinnikov, JETP Lett. 75, 378 (2002).

    Article  ADS  Google Scholar 

  32. V. V. Val’kov, D. M. Dzebisashvili, and A. F. Barabanov, Phys. Lett. A 379, 421 (2015).

    Article  Google Scholar 

  33. V. V. Val’kov, D. M. Dzebisashvili, M. M. Korovushkin, and A. F. Barabanov, JETP Lett. 103, 385 (2016).

    Article  ADS  Google Scholar 

  34. V. V. Val’kov, D. M. Dzebisashvili, M. M. Korovushkin, and A. F. Barabanov, J. Magn. Magn. Mater. 440, 123 (2017).

    Article  ADS  Google Scholar 

  35. V. V. Val’kov, D. M. Dzebisashvili, M. M. Korovushkin, and A. F. Barabanov, J. Low Temp. Phys. 191, 408 (2018).

    Article  ADS  Google Scholar 

  36. V. V. Val’kov, D. M. Dzebisashvili, M. M. Korovushkin, and A. F. Barabanov, J. Exp. Theor. Phys. 125, 810 (2017).

    Article  ADS  Google Scholar 

  37. S. Misawa, Phys. Rev. B 51, 11791 (1995).

    Article  ADS  Google Scholar 

  38. R. J. Radtke, V. N. Kostur, and K. Levin, Phys. Rev. B 53, R522 (1996).

    Article  ADS  Google Scholar 

  39. D. E. Sheehy, T. P. Davis, and M. Franz, Phys. Rev. B 70, 054510 (2004).

    Article  ADS  Google Scholar 

  40. J. P. Carbotte, K. A. G. Fisher, J. P. F. LeBlanc, and A. J. Nicol, Phys. Rev. B 81, 014522 (2010).

    Article  ADS  Google Scholar 

  41. M. V. Eremin, I. A. Larionov, and I. E. Lyubin, J. Phys.: Condens. Matter 22, 185704 (2010).

    ADS  Google Scholar 

  42. N. F. Mott, Metal-Insulator Transitions (Nauka, Moscow, 1979; Taylor Francis, London, 1974).

  43. M. Ogata and H. Fukuyama, Rep. Progr. Phys. 71, 036501 (2008).

    Article  ADS  Google Scholar 

  44. M. S. Hybertsen, M. Schluter, and N. E. Christensen, Phys. Rev. B 39, 9028 (1989).

    Article  ADS  Google Scholar 

  45. M. H. Fischer and E.-A. Kim, Phys. Rev. B 84, 144502 (2011).

    Article  ADS  Google Scholar 

  46. R. Zwanzig, Phys. Rev. 124, 983 (1961).

    Article  ADS  Google Scholar 

  47. H. Mori, Progr. Theor. Phys. 33, 423 (1965).

    Article  ADS  Google Scholar 

  48. L. M. Roth, Phys. Rev. Lett. 20, 1431 (1968).

    Article  ADS  Google Scholar 

  49. A. F. Barabanov, A. V. Mikheenkov, and A. V. Shvartsberg, Theor. Math. Phys. 168, 1192 (2011).

    Article  Google Scholar 

  50. V. V. Val’kov, D. M. Dzebisashvili, and A. F. Barabanov, J. Supercond. Nov. Magn. 29, 1049 (2016).

    Article  Google Scholar 

  51. V. V. Val’kov, D. M. Dzebisashvili, and A. F. Barabanov, JETP Lett. 104, 730 (2016).

    Article  ADS  Google Scholar 

  52. D. N. Zubarev, Sov. Phys. Usp. 3, 320 (1960).

    Article  ADS  Google Scholar 

  53. V. V. Val’kov, D. M. Dzebisashvili, and A. F. Barabanov, J. Low Temp. Phys. 181, 134 (2015).

    Article  ADS  Google Scholar 

  54. V. V. Val’kov, M. M. Korovushkin, and A. F. Barabanov, J. Low Temp. Phys. (2018, in press). https://doi.org/10.1007/s10909-018-02120-3

  55. D. M. Dzebisashvili and K. K. Komarov, Eur. Phys. J. B 91, 278 (2018).

    Article  ADS  Google Scholar 

  56. J. R. Schrieffer, Theory of Superconductivity (Perseus Books, MA, 1999).

    MATH  Google Scholar 

  57. M. V. Sadovskii, Diagrammatics. Lectures on Selected Problems in Condensed Matter Theory (RKhD, Izhevsk, 2010) [in Russian].

  58. M. Tinkham, Introduction to Superconductivity (Dover, New York, 2004; Atomizdat, Moscow, 1980).

  59. I. Bozovic, X. He, J. Wu, and A. T. Bollinger, Nature (London, U.K.) 536, 309 (2016).

    Article  ADS  Google Scholar 

  60. W. N. Hardy, D. A. Bonn, D. C. Morgan, R. Liang, and K. Zhang, Phys. Rev. Lett. 70, 3999 (1993).

    Article  ADS  Google Scholar 

  61. J. E. Sonier, J. H. Brewer, R. F. Kiefl, G. D. Morris, R. I. Miller, D. A. Bonn, J. Chakhalian, R. H. Heffner, W. N. Hardy, and R. Liang, Phys. Rev. Lett. 83, 4156 (1999).

    Article  ADS  Google Scholar 

  62. C. Panagopoulos, B. D. Rainford, J. R. Cooper, W. Lo, J. L. Tallon, J. W. Loram, J. Betouras, Y. S. Wang, and C. W. Chu, Phys. Rev. B 60, 14617 (1999).

    Article  ADS  Google Scholar 

  63. R. Khasanov, A. Shengelaya, A. Maisuradze, F. La Mattina, A. Bussmann-Holder, H. Keller, and K. A. Müller, Phys. Rev. Lett. 98, 057007 (2007).

    Article  ADS  Google Scholar 

  64. R. Khasanov, S. Strassle, D. di Castro, T. Masui, S. Miyasaka, S. Tajima, A. Bussmann-Holder, and H. Keller, Phys. Rev. Lett. 99, 237601 (2007).

    Article  ADS  Google Scholar 

  65. W. Anukool, S. Barakat, C. Panagopoulos, and J. R. Cooper, Phys. Rev. B 80, 024516 (2009).

    Article  ADS  Google Scholar 

  66. T. R. Lemberger, I. Hetel, A. Tsukada, and M. Naito, Phys. Rev. B 82, 214513 (2010).

    Article  ADS  Google Scholar 

  67. B. M. Wojek, S. Weyeneth, S. Bosma, E. Pomjakushina, and R. Puzniak, Phys. Rev. B 84, 144521 (2011).

    Article  ADS  Google Scholar 

  68. H. Fröhlich, Phys. Rev. 79, 845 (1950).

    Article  ADS  Google Scholar 

  69. V. V. Tolmachev, Sov. Phys. Dokl. 6, 800 (1961).

    ADS  Google Scholar 

  70. M. Yu. Kagan, V. A. Mitskan, and M. M. Korovushkin, Phys. Usp. 58, 733 (2015).

    Article  ADS  Google Scholar 

  71. S. Raghu, E. Berg, A. V. Chubukov, and S. A. Kivelson, Phys. Rev. B 85, 024516 (2012).

    Article  ADS  Google Scholar 

  72. M. Yu. Kagan, V. V. Val’kov, V. A. Mitskan, and M. M. Korovushkin, JETP Lett. 97, 226 (2013);

    Article  ADS  Google Scholar 

  73. J. Exp. Theor. Phys. 117, 728 (2013).

  74. V. V. Val’kov, V. A. Mitskan, D. M. Dzebisashvili, and A. F. Barabanov, J. Low Temp. Phys. 44, 130 (2018).

    Article  Google Scholar 

  75. A. F. Barabanov and A. M. Belemuk, JETP Lett. 87, 628 (2008).

    Article  ADS  Google Scholar 

  76. A. M. Belemuk, A. F. Barabanov, and L. A. Maksimov, JETP Lett. 79, 160 (2004);

    Article  ADS  Google Scholar 

  77. J. Exp. Theor. Phys. 102, 431 (2006);

  78. JETP Lett. 86, 321 (2006).

  79. A. M. Belemuk and A. F. Barabanov, JETP Lett. 82, 731 (2005).

    Article  ADS  Google Scholar 

  80. I. A. Larionov and A. F. Barabanov, JETP Lett. 100, 712 (2014).

    Article  ADS  Google Scholar 

  81. A. F. Barabanov, Yu. M. Kagan, L. A. Maksimov, A. V. Mikheyenkov, and T. V. Khabarova, Phys. Usp. 58, 446 (2015).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was prepared based on the results of XXXVIII Conference on low-temperature physics (NT-38).

Funding

This study was supported by the program no. 12 “Fundamental problems in high-temperature superconductivity” of the Presidium of the Russian Academy of Sciences, Russian Foundation for Basic Research (project no. 18-02-00837), the administration of the Krasnoyarsk Krai, Krasnoyarsk Krai Foundation for Supporting the Scientific and Technical Activity under project nos. 18-42-243002 (Manifestations of spin-nematic correlations in spectral characteristics of the electronic structure and their influence on the properties of cuprate superconductors in applications), 18-42-243018 (Contact phenomena and magnetic disorder in the problem of formation and detection of topologically protected edge states in semiconducting nanostructures), and 18-42-240014 (Single-orbital effective model of an ensemble of spin-polaron quasiparticles in the problem of description of the intermediate state and pseudogap behavior of cuprate superconductors), as well as the Council for grants from the President of the Russian Federation (project nos. MK-37.2019.2 and MK-3722.2018.2). The work of A.F.B was supported by the Russian Foundation for Basic Research (project no. 19-02-00509).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Val’kov.

Additional information

Translated by N. Wadhwa

APPENDIX

APPENDIX

Functions \(S_{{ij}}^{{(l)}}\)(k, ω) appearing in the expressions for anomalous Green functions Fij(k, ω) have the form

$$\begin{gathered} S_{{11}}^{{(1)}}(k,\omega ) = {{Q}_{{3y}}}(k, - \omega ){{Q}_{{3y}}}(k,\omega ), \\ S_{{11}}^{{(2)}}(k,\omega ) = S_{{21}}^{{(1)}}(k,\omega ) = {{Q}_{3}}(k, - \omega ){{Q}_{{3y}}}(k,\omega ), \\ S_{{11}}^{{(3)}}(k,\omega ) = S_{{12}}^{{(1)}}(k,\omega ) = S_{{11}}^{{(2)}}(k, - \omega ), \\ S_{{11}}^{{(4)}}(k,\omega ) = S_{{12}}^{{(2)}}(k,\omega ) \\ = S_{{21}}^{{(3)}}(k,\omega ) = S_{{22}}^{{(1)}}(k,\omega ) = {{Q}_{3}}(k, - \omega ){{Q}_{3}}(k,\omega ), \\ S_{{11}}^{{(5)}}(k,\omega ) = - {{Q}_{y}}(k, - \omega ){{Q}_{y}}(k,\omega ), \\ \end{gathered} $$
$$\begin{gathered} S_{{12}}^{{(3)}}(k,\omega ) = {{Q}_{{3y}}}(k, - \omega ){{Q}_{{3x}}}(k,\omega ), \\ S_{{21}}^{{(2)}}(k,\omega ) = S_{{12}}^{{(3)}}(k, - \omega ), \\ S_{{12}}^{{(4)}}(k,\omega ) = S_{{22}}^{{(3)}}(k,\omega ) = {{Q}_{3}}(k, - \omega ){{Q}_{{3x}}}(k,\omega ), \\ S_{{21}}^{{(4)}}(k,\omega ) = S_{{22}}^{{(2)}}(k,\omega ) = S_{{12}}^{{(4)}}(k, - \omega ), \\ \end{gathered} $$
$$\begin{gathered} S_{{12}}^{{(5)}}(k,\omega ) = - {{Q}_{y}}(k, - \omega ){{Q}_{x}}(k,\omega ), \\ S_{{21}}^{{(5)}}(k,\omega ) = S_{{12}}^{{(5)}}(k, - \omega ), \\ S_{{22}}^{{(4)}}(k,\omega ) = {{Q}_{{3x}}}(k, - \omega ){{Q}_{{3x}}}(k,\omega ), \\ S_{{22}}^{{(5)}}(k,\omega ) = - {{Q}_{x}}(k, - \omega ){{Q}_{x}}(k,\omega ), \\ \end{gathered} $$
((30))
$$\begin{gathered} S_{{31}}^{{(1)}}(k,\omega ) = - {{K}_{k}}{{Q}_{y}}(k, - \omega ){{Q}_{{3y}}}(k,\omega ), \\ S_{{31}}^{{(2)}}(k,\omega ) = - {{K}_{k}}{{Q}_{x}}(k, - \omega ){{Q}_{{3y}}}(k,\omega ), \\ S_{{31}}^{{(3)}}(k,\omega ) = S_{{32}}^{{(1)}}(k,\omega ) = - {{K}_{k}}{{Q}_{y}}(k, - \omega ){{Q}_{3}}(k,\omega ), \\ S_{{31}}^{{(4)}}(k,\omega ) = S_{{32}}^{{(2)}}(k,\omega ) = - {{K}_{k}}{{Q}_{x}}(k, - \omega ){{Q}_{3}}(k,\omega ), \\ \end{gathered} $$
$$\begin{gathered} S_{{31}}^{{(5)}}(k,\omega ) = {{Q}_{{xy}}}(k, - \omega ){{Q}_{y}}(k,\omega ), \\ S_{{32}}^{{(3)}}(k,\omega ) = - {{K}_{k}}{{Q}_{y}}(k, - \omega ){{Q}_{{3x}}}(k,\omega ), \\ S_{{32}}^{{(4)}}(k,\omega ) = - {{K}_{k}}{{Q}_{x}}(k, - \omega ){{Q}_{{3x}}}(k,\omega ), \\ S_{{32}}^{{(5)}}(k,\omega ) = {{Q}_{{xy}}}(k, - \omega ){{Q}_{{3x}}}(k,\omega ), \\ \end{gathered} $$
$$\begin{gathered} S_{{33}}^{{(1)}}(k,\omega ) = - K_{k}^{2}S_{{11}}^{{(5)}}(k,\omega ), \\ S_{{33}}^{{(2)}}(k,\omega ) = K_{k}^{2}S_{{12}}^{{(5)}}(k, - \omega ), \\ S_{{33}}^{{(3)}}(k,\omega ) = S_{{33}}^{{(2)}}(k, - \omega ), \\ S_{{33}}^{{(4)}}(k,\omega ) = K_{k}^{2}S_{{22}}^{{(5)}}(k,\omega ), \\ S_{{33}}^{{(5)}}(k,\omega ) = {{Q}_{{xy}}}(k, - \omega ){{Q}_{{xy}}}(k,\omega ). \\ \end{gathered} $$

These expression include functions

$${{Q}_{{x(y)}}}(k,\omega ) = (\omega - {{\xi }_{{x(y)}}}){{J}_{{y(x)}}} + {{t}_{k}}{{J}_{{x(y)}}},$$
$$\begin{gathered} {{Q}_{3}}(k,\omega ) = (\omega - {{\xi }_{L}}){{t}_{k}} + {{J}_{x}}{{J}_{y}}{{K}_{k}}, \\ {{Q}_{{3x(3y)}}}(k,\omega ) = (\omega - {{\xi }_{L}})(\omega - {{\xi }_{{x(y)}}}) - J_{{x(y)}}^{2}{{K}_{k}}, \\ \end{gathered} $$
((31))
$${{Q}_{{xy}}}(k,\omega ) = (\omega - {{\xi }_{x}})(\omega - {{\xi }_{y}}) - t_{k}^{2}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Val’kov, V.V., Dzembisashvili, D.M., Korovushkin, M.M. et al. Strong Spin–Charge Coupling and Its Manifestation in the Quasiparticle Structure, Cooper Instability, and Electromagnetic Properties of Cuprates. J. Exp. Theor. Phys. 128, 885–898 (2019). https://doi.org/10.1134/S1063776119050078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119050078

Navigation