Skip to main content
Log in

The Complexity Classes of Angular Diagrams of the Metal Conductivity in Strong Magnetic Fields

  • ELECTRONIC PROPERTIES OF SOLID
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider angular diagrams describing the dependence of the magnetic conductivity of metals on the direction of the magnetic field in rather strong fields. As it can be shown, all angular conductivity diagrams can be divided into a finite number of classes with different complexities. The greatest interest among such diagrams is represented by diagrams with the maximal complexity, which can occur for metals with rather complicated Fermi surfaces. In describing the structure of complex diagrams, in addition to the description of the conductivity itself, the description of the Hall conductivity for different directions of the magnetic field plays very important role. For the evaluation of the complexity of angular diagrams of the conductivity of metals, it is also convenient to compare such diagrams with the full mathematical diagrams that are defined (formally) for the entire dispersion relation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.

Similar content being viewed by others

REFERENCES

  1. C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963).

    MATH  Google Scholar 

  2. J. M. Ziman, Principles of the Theory of Solids (Cambridge Univ. Press, Cambridge, 1972).

    Book  MATH  Google Scholar 

  3. A. A. Abrikosov, Fundamentals of the Theory of Metals (Elsevier Science, Oxford, UK, 1988).

    Google Scholar 

  4. I. M. Lifshitz, M. Ya. Azbel, and M. I. Kaganov, Sov. Phys. JETP 4, 41 (1957).

    Google Scholar 

  5. I. M. Lifshitz and V. G. Peschansky, Sov. Phys. JETP 8, 875 (1959).

    Google Scholar 

  6. I. M. Lifshitz and V. G. Peschansky, Sov. Phys. JETP 11, 131 (1960).

    Google Scholar 

  7. I. M. Lifshitz and M. I. Kaganov, Sov. Phys. Usp. 2, 831 (1960).

    Article  ADS  Google Scholar 

  8. I. M. Lifshitz and M. I. Kaganov, Sov. Phys. Usp. 5, 878 (1963).

    Article  ADS  Google Scholar 

  9. I. M. Lifshitz and M. I. Kaganov, Sov. Phys. Usp. 8, 805 (1966).

    Article  ADS  Google Scholar 

  10. I. M. Lifshitz, M. Ya. Azbel, and M. I. Kaganov, Electron Theory of Metals (Nauka, Moscow, 1971; Consultants Bureau, New York, 1973).

  11. Conductivity Electrons, Ed. by M. I. Kaganov and V. S. Edelman (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  12. M. I. Kaganov and V. G. Peschansky, Phys. Rep. 372, 445 (2002).

    Article  ADS  Google Scholar 

  13. S. P. Novikov, Russ. Math. Surv. 37, 1 (1982).

    Article  Google Scholar 

  14. A. V. Zorich, Russ. Math. Surv. 39, 287 (1984).

    Article  Google Scholar 

  15. I. A. Dynnikov, Russ. Math. Surv. 47, 172 (1992).

    Article  MathSciNet  Google Scholar 

  16. I. A. Dynnikov, Math. Notes 53, 495 (1993).

    Article  MathSciNet  Google Scholar 

  17. S. P. Novikov and A. Y. Maltsev, JETP Lett. 63, 855 (1996).

    Article  ADS  Google Scholar 

  18. S. P. Novikov and A. Y. Maltsev, Phys. Usp. 41, 231 (1998).

    Article  ADS  Google Scholar 

  19. S. P. Tsarev, private commun. (1992–1993).

  20. I. A. Dynnikov, in Solitons, Geometry, and Topology: on the Crossroad, Vol. 179 of Am. Math. Soc. Translations, Ser. 2 (Am. Math. Soc., Providence, RI, 1997), p. 45.

  21. A. Y. Maltsev, J. Exp. Theor. Phys. 85, 934 (1997).

    Article  ADS  Google Scholar 

  22. A. Ya. Maltsev and S. P. Novikov, Proc. Steklov Inst. Math. 302, 279 (2018); arXiv:1805.05210

  23. I. A. Dynnikov, Russ. Math. Surv. 54, 21 (1999).

    Article  MathSciNet  Google Scholar 

  24. I. A. Dynnikov, in Proceedings of the 2nd International Electronic Conference on Materials ECM2, Budapest, Hungary, July 22–26, 1996.

  25. I. A. Dynnikov and A. Ya. Maltsev, J. Exp. Theor. Phys. 85, 205 (1997).

    Article  ADS  Google Scholar 

  26. A. Ya. Maltsev and S. P. Novikov, Bull. Braz. Math. Soc., New Ser. 34, 171 (2003).

  27. A. Ya. Maltsev and S. P. Novikov, J. Stat. Phys. 115, 31 (2004).

    Article  ADS  Google Scholar 

  28. A. Ya. Maltsev and S. P. Novikov, arXiv:cond-mat/0304471

  29. R. de Leo, Phys. B (Amsterdam, Neth.) 362, 6275 (2005).

  30. A. Ya. Maltsev, J. Exp. Theor. Phys. 124, 805 (2017).

    Article  ADS  Google Scholar 

  31. A. Ya. Maltsev, J. Exp. Theor. Phys. 125, 896 (2017).

    Article  ADS  Google Scholar 

  32. A. Ya. Maltsev, J. Exp. Theor. Phys. 127, 1087 (2018); arXiv:1804.10762.

  33. A. V. Zorich, in Proceedings of the Conference on Geometric Study of Foliations, Tokyo, November 1993, Ed. by T. Mizutani et al. (World Scientific, Singapore, 1994), p. 479.

  34. A. V. Zorich, Ann. Inst. Fourier 46, 325 (1996).

    Article  MathSciNet  Google Scholar 

  35. A. Zorich, in Solitons, Geometry, and Topology: On the Crossroad, Ed. by V. M. Buchstaber and S. P. Novikov, Vol. 179 of Am. Math. Soc. Translations, Ser. 2 (Am. Math. Soc., Providence, RI, 1997), p. 173.

  36. A. Zorich, in Pseudoperiodic Topology, Ed. by V. I. Arnold, M. Kontsevich, and A. Zorich, Vol. 197 of Am. Math. Soc. Translations, Ser. 2 (Am. Math. Soc., Providence, RI, 1999), p. 135.

  37. R. de Leo, Russ. Math. Surv. 55, 166 (2000).

    Article  MathSciNet  Google Scholar 

  38. R. de Leo, Russ. Math. Surv. 58, 1042 (2003).

    Article  MathSciNet  Google Scholar 

  39. R. de Leo, Exp. Math. 15, 109 (2006).

    Article  Google Scholar 

  40. A. Zorich, in Frontiers in Number Theory, Physics and Geometry, Vol. 1: On Random Matrices, Zeta Functions and Dynamical Systems, Proceedings of the Ecole de physique des Houches, France, March 9–21, 2003, Ed. by P. Cartier, B. Julia, P. Moussa, and P. Vanhove (Springer, Berlin, 2006), p. 439.

  41. R. de Leo and I. A. Dynnikov, Russ. Math. Surv. 62, 990 (2007).

    Article  Google Scholar 

  42. R. de Leo and I. A. Dynnikov, Geom. Dedic. 138, 51 (2009).

    Article  Google Scholar 

  43. A. Skripchenko, Discrete Contin. Dyn. Sys. 32, 643 (2012).

    MathSciNet  Google Scholar 

  44. A. Skripchenko, Ann. Glob. Anal. Geom. 43, 253 (2013).

    Article  MathSciNet  Google Scholar 

  45. I. Dynnikov and A. Skripchenko, in Topology, Geometry, Integrable Systems, and Mathematical Physics: Novikov’s Seminar 2012–2014, Ed. V. M. Buchstaber, B. A. Dubrovin, and I. M. Krichever, Vol. 234 of Am. Math. Soc. Translations, Ser. 2 (Am. Math. Soc., Providence, RI, 2014), p. 173; arXiv: 1309.4884

  46. I. Dynnikov and A. Skripchenko, Trans. Moscow Math. Soc. 76, 287 (2015).

    Article  Google Scholar 

  47. A. Avila, P. Hubert, and A. Skripchenko, Invent. Math. 206, 109 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  48. A. Avila, P. Hubert, and A. Skripchenko, Bull. Soc. Math. Fr. 144, 539 (2016).

    Article  Google Scholar 

  49. R. de Leo, arXiv:1711.01716.

Download references

Funding

The study was carried out at the expense of a grant from the Russian Science Foundation (project no. 18-11-00316).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ya. Maltsev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maltsev, A.Y. The Complexity Classes of Angular Diagrams of the Metal Conductivity in Strong Magnetic Fields. J. Exp. Theor. Phys. 129, 116–138 (2019). https://doi.org/10.1134/S1063776119050042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119050042

Navigation