Advertisement

Features of Correlated States and a Mechanism of Self-Similar Selection of Nuclear Reaction Channels Involving Low-Energy Charged Particles

  • V. I. VysotskiiEmail author
  • M. V. Vysotskyy
NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • 13 Downloads

Abstract

Features of the Robertson–Schrödinger coordinate–momentum and energy–time uncertainty relations and connection between them have been considered. A method has been proposed to determine the duration of giant energy fluctuations of particles in a correlated coherent state. This method makes it possible to justify both a huge (many orders of magnitude) increase in the probability of the tunnel effect with the subsequent low-energy nuclear reaction and the automatic selection of low-energy reaction channels involving charged particles and the exclusion of the production of radioactive daughter isotopes. It has been shown that the same mechanism of formation of correlated coherent states explains a very significant suppression of gamma radiation observed in such reactions stimulated by the virtual energy as compared to similar reactions proceeding at a high “real” energy of particles.

Notes

REFERENCES

  1. 1.
    S. Lipinski and H. Lipinski, WO Int. Patent No. 2014/189799 A9 (2013).Google Scholar
  2. 2.
    G. Levi, E. Foschi, B. Höistad, R. Pettersson, L. Tegnér, and H. Essén, Observation of Abundant Heat Production from a Reactor Device and of Isotopic Changes in the Fuel, Official Expertise in Lugano, 2014. http://www.sifferkoll.se/sifferkoll/wp-content/uploads/2014/10/LuganoReportSubmit.pdf.Google Scholar
  3. 3.
    R. Mills, Brilliant Light Power, Inc. (BLP). http://brilliantlightpower.com.Google Scholar
  4. 4.
    V. I. Vysotskii and S. V. Adamenko, Tech. Phys. 55, 613 (2010).CrossRefGoogle Scholar
  5. 5.
    V. I. Vysotskii, M. V. Vysotskyy, and S. V. Adamenko, J. Exp. Theor. Phys. 114, 243 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    V. I. Vysotskii, S. V. Adamenko, and M. V. Vysotskyy, J. Exp. Theor. Phys. 115, 551 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    V. I. Vysotskii, S. V. Adamenko, and M. V. Vysotskyy, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 369 (2012).CrossRefGoogle Scholar
  8. 8.
    V. I. Vysotskii and M. V. Vysotskyy, Eur. Phys. J. A 49, 99 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    V. I. Vysotskii, S. V. Adamenko, and M. V. Vysotskyy, Ann. Nucl. Energy 62, 618 (2013).CrossRefGoogle Scholar
  10. 10.
    V. I. Vysotskii and M. V. Vysotskyy, J. Exp. Theor. Phys. 118, 534 (2014).ADSCrossRefGoogle Scholar
  11. 11.
    V. I. Vysotskii and M. V. Vysotskyy, J. Exp. Theor. Phys. 121, 559 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    V. I. Vysotskii and M. V. Vysotskyy, Curr. Sci. 108, 524 (2015).Google Scholar
  13. 13.
    V. I. Vysotskii and M. V. Vysotskyy, J. Exp. Theor. Phys. 120, 246 (2015).ADSCrossRefGoogle Scholar
  14. 14.
    V. I. Vysotskii and M. V. Vysotskyy, J. Exp. Theor. Phys. 125, 195 (2017).ADSCrossRefGoogle Scholar
  15. 15.
    V. I. Vysotskii, M. V. Vysotskyy, and S. Bartalucci, J. Exp. Theor. Phys. 127, 479 (2018).ADSCrossRefGoogle Scholar
  16. 16.
    E. Schrödinger, Ber. Kgl. Akad. Wiss. Berlin S24, 296 (1930).Google Scholar
  17. 17.
    H. P. Robertson, Phys. Rev. A 35, 667 (1930).Google Scholar
  18. 18.
    V. V. Dodonov and A. V. Dodonov, Phys. Scr. 90, 074049 (2015).ADSCrossRefGoogle Scholar
  19. 19.
    V. V. Dodonov, E. V. Kurmyshev, and V. I. Manko, Phys. Lett. A 79, 150 (1980).ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    V. V. Dodonov and V. I. Man’ko, Tr. FIAN 183, 71 (1987).Google Scholar
  21. 21.
    V. V. Dodonov, A. B. Klimov, and V. I. Man’ko, Tr. FIAN 200, 56 (1991).Google Scholar
  22. 22.
    V. V. Dodonov, A. B. Klimov, and V. I. Man’ko, Phys. Lett. A 220, 41 (1996).ADSCrossRefGoogle Scholar
  23. 23.
    V. V. Dodonov and A. V. Dodonov, J. Russ. Laser Res. 35, 39 (2014).CrossRefGoogle Scholar
  24. 24.
    A. V. Dodonov and V. V. Dodonov, Phys. Lett. A 378, 1071 (2014).ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    W. Pauli, in Handbuch der Physik, Ed. by S. Flügge (Springer, Berlin, 1926), Vol. 5/1, p. 60.Google Scholar
  26. 26.
    Y. Aharonov and D. Bohm, Phys. Rev. 122, 1649 (1961).ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Razavy, Am. J. Phys. 35, 955 (1967).ADSCrossRefGoogle Scholar
  28. 28.
    R. Arshansky and L. P. Horwitz, Found. Phys. 15, 701 (1985).ADSMathSciNetCrossRefGoogle Scholar
  29. 29.
    S. Rolfs and R. W. Kavanagh, Nucl. Phys. A 455, 179 (1986).ADSCrossRefGoogle Scholar
  30. 30.
    G. Calvi, S. Cherubini, M. Lattuade, et al., Nucl. Phys. A 621, 139 (1997).ADSCrossRefGoogle Scholar
  31. 31.
    E. H. Haug and J. A. Stovneng, Rev. Mod. Phys. 61, 917 (1989).ADSCrossRefGoogle Scholar
  32. 32.
    V. S. Olkhovsky and E. Recami, Phys. Rep. 214, 339 (1992).ADSCrossRefGoogle Scholar
  33. 33.
    E. Recami, J. Mod. Opt. 51, 913 (2004).ADSGoogle Scholar
  34. 34.
    V. S. Olkhovsky, E. Recami, and G. Salesi, Europhys. Lett. 57, 879 (2002).ADSCrossRefGoogle Scholar
  35. 35.
    V. A. Olkhovsky, E. Recami, and J. Jakiel, Phys. Rep. 398, 133 (2004).ADSCrossRefGoogle Scholar
  36. 36.
    V. S. Olkhovsky, Phys. Usp. 54, 829 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    V. I. Vysotskii and A. A. Kornilova, Ann. Nucl. Energy 62, 626 (2013).CrossRefGoogle Scholar
  38. 38.
    V. I. Vysotskii and A. A. Kornilova, Curr. Sci. 108, 636 (2015).Google Scholar
  39. 39.
    A. A. Kornilova, V. I. Vysotskii, N. N. Sysoev, N. K. Litvin, V. I. Tomak, and A. A. Barzov, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 4, 1008 (2010).CrossRefGoogle Scholar
  40. 40.
    V. I. Vysotskii, V. P. Bugrov, A. A. Kornilova, R. N. Kuzmin, and S. I. Reyman, Hyperfine Interact. 107, 277 (1997).ADSCrossRefGoogle Scholar
  41. 41.
    S. V. Adamenko and V. I. Vysotskii, Found. Phys. Lett. 19, 21 (2006).CrossRefGoogle Scholar
  42. 42.
    A. V. Gurevich, V. P. Antonova, A. P. Chubenko, A. N. Karashtin, G. G. Mitko, M. O. Ptitsyn, V. A. Ryabov, A. L. Shepetov, Yu. V. Shlyugaev, L. I. Vildanova, and K. P. Zybin, Phys. Rev. Lett. 108, 125001 (2012).ADSCrossRefGoogle Scholar
  43. 43.
    B. Zh. Zalikhanov, Phys. Part. Nucl. 47, 108 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Taras Shevchenko National University of KyivKyivUkraine

Personalised recommendations