Skip to main content
Log in

Fractal Dimension Effect on the Magnetization Curves of Exchange-Coupled Clusters of Magnetic Nanoparticles

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The effect of the fractal dimension of exchange-coupled clusters of magnetic nanoparticles on their magnetization curves is predicted by scaling estimates. These predictions form the basis for the experimental technique used for determining the fractal dimension of nanoparticle clusters from the magnetization curves. We estimate the reliability of determining the dimension by such methods with the help of micromagnetic simulation. It is shown that the effective dimension of magnetic correlation volumes, which is determined from analysis of the magnetization approaching saturation, is in conformity with the dimension of fractal clusters determined from analysis of their morphology. The dimension estimated from analysis of the coercive field on the particle size in a physically natural situation of the dipole–dipole interaction between nanoparticles provides estimates of the cluster dimension, which strongly differs from estimates obtained from analysis of their morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. B. B. Mandelbrot, The Fractal Geometry of Nature (W. H. Freeman, US, 1982).

    MATH  Google Scholar 

  2. J. F. Gouyet, Physics and Fractal Structures (Springer, New York, 1996).

    MATH  Google Scholar 

  3. C. Swoboda, M. Martens, and G. Meier, Phys. Rev. B 91, 064416 (2015).

    Article  ADS  Google Scholar 

  4. P. Monceau and J.-C. S. Levy, Phys. Lett. A 374, 1872 (2010).

    Article  ADS  Google Scholar 

  5. S. H. Liu, Solid State Phys. 39, 207 (1986).

    Article  Google Scholar 

  6. T. Nakayama and K. Yakubo, Fractal Concepts in Condensed Matter Physics (Springer, Berlin, Heidelberg, 2003).

    Book  Google Scholar 

  7. A. Bunde and S. Havlin, Fractals and Disordered Systems (Springer, Berlin, Heidelberg, 1996).

    Book  MATH  Google Scholar 

  8. B. M. Smirnov, Sov. Phys. Usp. 29, 481 (1986).

    Article  ADS  Google Scholar 

  9. S. V. Karpov, V. S. Gerasimov, I. L. Isaev, and V. A. Markel, Phys. Rev. B 72, 205425 (2005).

    Article  ADS  Google Scholar 

  10. T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47, 1400 (1981).

    Article  ADS  Google Scholar 

  11. M. Balasoiu, M. V. Avdeev, V. L. Aksenov, D. Hasegan, V. M. Garamus, A. Schreyer, D. Bica, and L. Vekas, J. Magn. Magn. Mater. 300, e225 (2006).

    Article  ADS  Google Scholar 

  12. A. V. Nagornyi, V. I. Petrenko, M. V. Avdeev, O. V. Yelenich, S. O. Solopan, A. G. Belous, A. Yu. Gruzinov, O. I. Ivankov, and L. A. Bulavin, J. Magn. Magn. Mater. 431, 16 (2017).

    Article  ADS  Google Scholar 

  13. G. Herzer, Mater. Sci. Eng. A 133, 1 (1991).

    Article  Google Scholar 

  14. R. S. Iskhakov, S. V. Komogortsev, A. D. Balaev, and L. A. Chekanova, JETP Lett. 72, 304 (2000).

    Article  ADS  Google Scholar 

  15. R. S. Iskhakov and S. V. Komogortsev, Phys. Met. Metallogr. 112, 666 (2011).

    Article  ADS  Google Scholar 

  16. V. A. Ignatchenko and V. A. Felk, Phys. Rev. B 71, 094417 (2005).

    Article  ADS  Google Scholar 

  17. V. A. Ignatchenko and V. A. Felk, Phys. Rev. B 74, 174415 (2006).

    Article  ADS  Google Scholar 

  18. V. A. Ignatchenko and V. A. Felk, Phys. Met. Metallogr. 100, S63 (2005).

    Google Scholar 

  19. G. Herzer, IEEE Trans. Magn. 25, 3327 (1989).

    Article  ADS  Google Scholar 

  20. R. Skomski, J. Phys.: Condens. Matter 15, R841 (2003).

    ADS  Google Scholar 

  21. G. Herzer, Acta Mater. 61, 718 (2013).

    Article  Google Scholar 

  22. R. S. Iskhakov, V. A. Ignatchenko, S. V. Komogortsev, and A. D. Balaev, JETP Lett. 78, 646 (2003).

    Article  ADS  Google Scholar 

  23. R. S. Iskhakov, S. V. Komogortsev, A. D. Balaev, A. V. Okotrub, A. G. Kudashov, V. L. Kuznetsov, and Yu. V. Butenko, JETP Lett. 78, 236 (2003).

    Article  ADS  Google Scholar 

  24. R. S. Iskhakov, S. V. Komogortsev, A. D. Balaev, and L. A. Chekanova, Tech. Phys. Lett. 28, 725 (2002).

    Article  ADS  Google Scholar 

  25. G. S. Kraynova, A. M. Frolov, and T. A. Pisarenko, Adv. Mater. Res. 718–720, 85 (2013).

  26. R. S. Iskhakov, S. V. Komogortsev, B. A. Denisova, Yu. E. Kalinin, and A. V. Sitnikov, JETP Lett. 86, 465 (2007).

    Article  ADS  Google Scholar 

  27. S. V. Komogortsev, R. S. Iskhakov, A. A. Zimin, E. Y. Filatov, S. V. Korenev, Y. V. Shubin, N. A. Chizhik, G. Y. Yurkin, and E. V. Eremin, J. Magn. Magn. Mater. 401, 236 (2016).

    Article  ADS  Google Scholar 

  28. R. S. Iskhakov, S. V. Komogortsev, A. D. Balaev, and A. A. Gavriliuk, J. Magn. Magn. Mater. 374, 423 (2015).

    Article  ADS  Google Scholar 

  29. V. A. Ignatchenko and R. S. Iskhakov, Fiz. Met. Met. 73, 602 (1992).

    Google Scholar 

  30. E. M. Chudnovsky, W. M. Saslow, and R. A. Serota, Phys. Rev. B 33, 251 (1986).

    Article  ADS  Google Scholar 

  31. D. A. Garanin, E. M. Chudnovsky, and T. Proctor, Phys. Rev. B 88, 224418 (2013).

    Article  ADS  Google Scholar 

  32. V. A. Ignatchenko and R. S. Iskhakov, Izv. Akad. Nauk SSSR, Ser. Fiz. 44, 1434 (1980).

    Google Scholar 

  33. V. A. Ignatchenko, R. S. Iskhakov, and G. V. Popov, Sov. Phys. JETP 55, 878 (1982).

    Google Scholar 

  34. G. Herzer, in Handbook of Magnetism and Advanced Magnetic Materials, Ed. by H. Kronmüller and S. S. P. Parkin (Wiley, Hoboken, 2007).

    Google Scholar 

  35. R. S. Iskhakov and S. V. Komogortsev, Bull. Russ. Acad. Sci.: Phys. 71, 1620 (2007).

    Article  Google Scholar 

  36. A. Michels, R. N. Viswanath, J. G. Barker, R. Birringer, and J. Weissmuller, Phys. Rev. Lett. 91, 267204 (2003).

    Article  ADS  Google Scholar 

  37. A. Grob, S. Saranu, U. Herr, A. Michels, R. N. Viswanath, and J. Weissmuller, Phys. Stat. Sol. Appl. Res. 201, 3354 (2004).

    Article  ADS  Google Scholar 

  38. Y. Gao, D. Shindo, T. Bitoh, and A. Makino, Phys. Rev. B 67, 172409 (2003).

    Article  ADS  Google Scholar 

  39. I. R. McFadyen and I. A. Beardsley, J. Appl. Phys. 67, 5540 (1990).

    Article  ADS  Google Scholar 

  40. V. I. Petrov, G. V. Spivak, and O. P. Pavlyuchenko, Sov. Phys. Usp. 15, 66 (1972).

    Article  ADS  Google Scholar 

  41. T. Suzuki, Phys. Status Solidi 37, 101 (1970).

    Article  Google Scholar 

  42. H. W. Fuller and M. E. Hale, J. Appl. Phys. 31, 238 (1960).

    Article  ADS  Google Scholar 

  43. J. Echigoya, J. Mater. Sci. 40, 3209 (2005).

    Article  ADS  Google Scholar 

  44. S. Thomas, S. H. Al-Harthi, D. Sakthikumar, I. A. Al-Omari, R. V. Ramanujan, Y. Yoshida, and M. R. Anantharaman, J. Phys. D 41, 155009 (2008).

    Article  ADS  Google Scholar 

  45. S. V. Komogortsev and R. S. Iskhakov, J. Magn. Magn. Mater. 440, 213 (2017).

    Article  ADS  Google Scholar 

  46. P. Garoche and A. P. Malozemoff, Phys. Rev. B 29, 226 (1984).

    Article  ADS  Google Scholar 

  47. J. Rampe, Visions of Chaos, Vol. 59.3, 2016. http://softology.com.au/voc.htm.

  48. M. J. Donahue and D. G. Porter, 1999 OOMMF User’s Guide, Vers. 1.0, Interagency Report NISTIR No. 6376 (2004).

  49. S. V. Komogortsev, V. A. Fel’k, R. S. Iskhakov, and G. V. Shadrina, J. Exp. Theor. Phys. 125, 323 (2017).

    Article  ADS  Google Scholar 

  50. S. V. Komogortsev and R. S. Iskhakov, Phys. Solid State 47, 480 (2005).

    Article  Google Scholar 

  51. W. Maass, U. Krey, and H. Hoffmann, Phys. Statud Solidi 122, K137 (1984).

    Article  ADS  Google Scholar 

  52. V. Dupuis, J. P. Perez, J. Tuaillon, V. Paillard, P. Melinon, A. Perez, B. Barbara, L. Thomas, S. Fayeulle, and J. M. Gray, J. Appl. Phys. 76, 6676 (1994).

    Article  ADS  Google Scholar 

  53. L. Thomas, J. Tuaillon, J. P. Perez, V. Dupuis, A. Perez, and B. Barbara, J. Magn. Magn. Mater. 140–144, 437 (1995).

  54. E. Schlomann, J. Appl. Phys. 38, 5027 (1967).

    Article  ADS  Google Scholar 

Download references

FUNDING

This work was supported by Russian Foundation for Basic Research, Government of Krasnoyarsk Territory, Krasnoyarsk Region Science and Technology Support Fund under the research project no. 18-42-240006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Fel’k.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komogortsev, S.V., Iskhakov, R.S. & Fel’k, V.A. Fractal Dimension Effect on the Magnetization Curves of Exchange-Coupled Clusters of Magnetic Nanoparticles. J. Exp. Theor. Phys. 128, 754–760 (2019). https://doi.org/10.1134/S1063776119040095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119040095

Navigation