Skip to main content
Log in

Frustration Properties of the 1D Ising Model

Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We analyze frustration properties of the Ising model for a 1D monatomic equidistant lattice in an external uniform magnetic field considering exchange interactions of atomic spins at the sites of the first (nearest) and second neighbors. Exact analytic expressions for thermodynamic and magnetic characteristics of the system, as well as for the Fourier transform of the pair spin–spin correlation function and magnetic diffused scattering wavevectors, were obtained by the method of the Kramers–Wannier transfer matrix considering the exchange interaction between spins at the nearest-neighbor sites in an external magnetic field, as well as the exchange interaction between spins at the second-neighbor sites in zero magnetic field. The criteria for the emergence of magnetic frustration in the presence of competition not only between exchange-interaction energies, but also between these energies and the external magnetic field energy are formulated. The frustration points and the values of frustration magnetic fields depending on the magnitudes and signs of the exchange interaction are determined. The distinguishing features of this model in the frustration regime and its vicinity are analyzed. The set of characteristic features inherent in observables for systems with magnetic frustrations is considered and analyzed. It is shown that the inclusion of competing exchange interactions at the first- and second-neighbor sites makes it possible to describe the behavior of the magnetic diffused scattering wavevector for commensurate, incommensurate, and lock-in structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.
Fig. 24.
Fig. 25.
Fig. 26.
Fig. 27.
Fig. 28.
Fig. 29.
Fig. 30.
Fig. 31.
Fig. 32.
Fig. 33.
Fig. 34.
Fig. 35.
Fig. 36.
Fig. 37.
Fig. 38.
Fig. 39.
Fig. 40.
Fig. 41.
Fig. 42.

REFERENCES

  1. F. A. Kassan-Ogly and B. N. Filippov, Bull. Russ. Acad. Sci.: Phys. 74, 1452 (2010).

    Article  Google Scholar 

  2. B. Normand, Contemp. Phys. 50, 533 (2009).

    Article  ADS  Google Scholar 

  3. L. Balents, Nature (London, U.K.) 464, 199 (2010).

    Article  ADS  Google Scholar 

  4. Introduction to Frustrated Magnetism: Materials, Experiments, Theory, Eed. by C. Lacroix, P. Mendels, and F. Mila (Springer, Berlin, Heidelberg, 2011).

  5. J.-F. Sadoc and R. Mosseri, Geometrical Frustration (Cambridge Univ. Press, New York, 1999).

    Book  Google Scholar 

  6. Frustrated Spin Systems, Ed. by H. T. Diep, 2nd ed. (World Scientific, New Jersey, 2013).

    MATH  Google Scholar 

  7. G. Toulouse, Commun. Phys. 2, 115 (1977).

    Google Scholar 

  8. J. Vannimenus and G. Toulouse, J. Phys. C: Sol. St. Phys. 10, L537 (1977).

    Article  ADS  Google Scholar 

  9. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, London, 1982).

    MATH  Google Scholar 

  10. E. Ising, Z. Phys. 31, 253 (1925).

    Article  ADS  Google Scholar 

  11. S. G. Brush, Rev. Mod. Phys. 39, 883 (1967).

    Article  ADS  Google Scholar 

  12. M. Niss, Arch. Hist. Exact Sci. 59, 267 (2005).

    Article  MathSciNet  Google Scholar 

  13. F. A. Kassan-Ogly, Phase Trans. 74, 353 (2001).

    Article  Google Scholar 

  14. F. A. Kassan-Ogly, E. V. Kormil’tsev, V. E. Naish, and I. V. Sagaradze, Sov. Phys. Sol. State 31, 43 (1989).

    Google Scholar 

  15. A. V. Zarubin, F. A. Kassan-Ogly, and A. I. Proshkin, Mater. Sci. Forum 845, 122 (2016).

    Article  Google Scholar 

  16. H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252 (1941).

    Article  ADS  MathSciNet  Google Scholar 

  17. R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed. (Cambridge Univ. Press, Cambridge, 2013).

    MATH  Google Scholar 

  18. G. Mussardo, Statistical Field Theory: An Introductionto Exactly Solved Models in Statistical Physics (Oxford Univ. Press, Oxford, New York, 2010).

    MATH  Google Scholar 

  19. W. Nolting and A. Ramakanth, Quantum Theory of Magnetism (Springer, Berlin, Heidelberg, 2009).

    Book  MATH  Google Scholar 

  20. A. Guinier and R. Griffoul, Acta Crystallogr. 1, 188 (1948).

    Article  Google Scholar 

  21. A. Guinier, X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies (W. H. Freeman, San Francisco, London, 1963).

    Google Scholar 

  22. A. Sommerfeld, Thermodynamics and Statistical Mechanics (Academic, New York, 1956).

    MATH  Google Scholar 

  23. W. Nolting, Theoretical Physics 8: Statistical Physics (Springer, Cham, 2018).

    Book  MATH  Google Scholar 

  24. A. V. Zarubin, F. A. Kassan-Ogly, M. V. Medvedev, and A. I. Proshkin, Solid State Phenom. 233234, 212 (2015).

  25. A. Proshkin, F. Kassan-Ogly, A. Zarubin, T. Ponomareva, and I. Menshikh, EPJ Web Conf. 185, 03004 (2018).

    Article  Google Scholar 

  26. J. G. Sereni, in Handbook on the Physics and Chemistry of Rare Earths (Elsevier, Amsterdam, 1991), Vol. 15, Chap. 98, p. 1.

    Google Scholar 

  27. T. Matsumura, H. Shida, and T. Suzuki, Phys. B (Amsterdam, Neth.) 230232, 738 (1997).

  28. H. Tsujii, C. R. Rotundu, Y. Takano, B. Andraka, Y. Aoki, H. Sugawara, and H. Sato, J. Magn. Magn. Mater. 272276, 173 (2004).

  29. Y. Sato, H. Morodomi, Y. Inagaki, T. Kawae, and H. S. Suzuki, J. Phys.: Conf. Ser. 568, 042027 (2014).

    Google Scholar 

  30. M. A. Avila, S. L. Bud’ko, and P. C. Canfield, J. Magn. Magn. Mater. 270, 51 (2004).

    Article  ADS  Google Scholar 

  31. Y. Kobayashi, T. Onimaru, M. A. Avila, K. Sasai, M. Soda, K. Hirota, and T. Takabatake, J. Phys. Soc. Jpn. 77, 124701 (2008).

    Article  ADS  Google Scholar 

  32. P. Santini, R. Lémanski, and P. Erdös, Adv. Phys. 48, 537 (1999).

    Article  ADS  Google Scholar 

  33. J. Stephenson, Can. J. Phys. 48, 1724 (1970).

    Article  ADS  Google Scholar 

  34. J. F. Dobson, J. Math. Phys. 10, 40 (1969).

    Article  ADS  Google Scholar 

  35. T. Oguchi, J. Phys. Soc. Jpn. 20, 2236 (1965).

    Article  ADS  Google Scholar 

  36. A. I. Proshkin and F. A. Kassan-Ogly, Mater. Sci. Forum 845, 93 (2016).

    Article  Google Scholar 

  37. H. Wada, H. Imai, and M. Shiga, J. Alloys Comp. 218, 73 (1995).

    Article  Google Scholar 

  38. V. Goruganti, K. D. D. Rathnayaka, J. H. Ross, Y. Öner, C. S. Lue, and Y. K. Kuo, J. Appl. Phys. 103, 073919 (2008).

    Article  ADS  Google Scholar 

  39. O. Pavlosiuk, D. Kaczorowski, X. Fabreges, A. Gukasov, and P. Wiśniewski, Sci. Rep. 6, 18797 (2016).

    Article  ADS  Google Scholar 

  40. S. Wakimoto, S. Lee, P. M. Gehring, R. J. Birgeneau, and G. Shirane, J. Phys. Soc. Jpn. 73, 3413 (2004).

    Article  ADS  Google Scholar 

  41. S. Wakimoto, H. Kimura, M. Fujita, K. Yamada, Y. Noda, G. Shirane, G. Gu, H. Kim, and R. J. Birgeneau, J. Phys. Soc. Jpn. 75, 074714 (2006).

    Article  ADS  Google Scholar 

  42. R. Kajimoto, H. Yoshizawa, Y. Tomioka, and Y. Tokura, Phys. Rev. B 63, 212407 (2001).

    Article  ADS  Google Scholar 

  43. T. Chattopadhyay, P. J. Brown, P. Thalmeier, and H. G. von Schnering, Phys. Rev. Lett. 57, 372 (1986).

    Article  ADS  Google Scholar 

  44. T. Chattopadhyay, P. J. Brown, and H. G. von Schnering, Eur. Phys. Lett. 6, 89 (1988).

    Article  ADS  Google Scholar 

  45. F. Pfuner, S. N. Gvasaliya, O. Zaharko, L. Keller, J. Mesot, V. Pomjakushin, J.-H. Chu, I. R. Fisher, and L. Degiorgi, J. Phys.: Condens. Matter 24, 036001 (2012).

    ADS  Google Scholar 

  46. P. Burlet, S. Quezel, J. Rossat-Mignod, J. C. Spirlet, J. Rebizant, W. Müller, and O. Vogt, Phys. Rev. B 30, 6660 (1984).

    Article  ADS  Google Scholar 

  47. D. Vaknin, J. L. Zarestky, J.-P. Rivera, and H. Schmid, Phys. Rev. Lett. 92, 207201 (2004).

    Article  ADS  Google Scholar 

  48. J. von Boehm and P. Bak, Phys. Rev. Lett. 42, 122 (1979).

    Article  ADS  Google Scholar 

  49. P. Bak and J. von Boehm, Phys. Rev. B 21, 5297 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  50. P. Bak, Rep. Progr. Phys. 45, 587 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  51. W. Selke and M. E. Fisher, Phys. Rev. B 20, 257 (1979).

    Article  ADS  Google Scholar 

  52. E. B. Rasmussen and S. J. Knak Jensen, Phys. Rev. B 24, 2744 (1981).

    Article  ADS  Google Scholar 

  53. M. E. Fisher and W. Selke, Phys. Rev. Lett. 44, 1502 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  54. W. Selke and P. M. Duxbury, Z. Phys. B 57, 49 (1984).

    Article  ADS  Google Scholar 

  55. W. Selke, Phys. Rep. 170, 213 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  56. W. Selke, in Phase Transitions and Critical Phenomena, Ed. by C. Domb and J. L. Lebowitz (Academic, London, 1992), Chap. 1, p. 1.

    Google Scholar 

  57. S. Aubry, J. Phys. C: Sol. St. Phys. 16, 2497 (1983).

    Article  ADS  Google Scholar 

  58. S. Aubry, K. Fesser, and A. R. Bishop, Ferroelectrics 66, 151 (1986).

    Article  Google Scholar 

Download references

FUNDING

The research was carried out within the state assignment of FASO of Russia (theme “Quantum” no. 01201463332) and supported in part by Ural Branch of the Russian Academy of Sciences (project no. 18-2-2-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Zarubin.

Additional information

Translated by N. Wadhwa

APPENDIX

APPENDIX

Here, we write exact analytic expressions for the entropy and magnetization at zero temperature in the case of competing exchange interactions between spins at the sites of the first and second neighbors (88) for the Ising spin chain in an external magnetic field.

Thus, in the case of the antiferro–antiferromagnetic variant of parameters of the exchange interactions of spins at the sites of the first and second neighbors (J1 < 0, J2 < 0) in a frustrating magnetic field HAA0 (112), the zero-temperature entropy and magnetization are given by

$$\begin{gathered} \mathop {\lim }\limits_{T \to 0} S({{H}_{{AA0}}}) = \ln \left[ {\frac{1}{3}\left( {1 + {{\vartheta }_{0}} + \frac{1}{{{{\vartheta }_{0}}}}} \right)} \right] \approx 0.382, \\ {{\vartheta }_{0}} = \sqrt[3]{{\frac{{\sqrt {({{3}^{3}} + {{2}^{2}}){{3}^{3}}} + {{3}^{3}} + 2}}{2}}}, \\ \end{gathered} $$
((118))
$$\mathop {\lim }\limits_{T \to 0} M({{H}_{{AA0}}}) = \frac{1}{3}\left( {1 + {{\nu }_{0}} + \frac{{{{2}^{2}}}}{{{{3}^{3}} + {{2}^{2}}}}\frac{1}{{{{\nu }_{0}}}}} \right) \approx 0.611,$$
((119))
$${{\nu }_{0}} = {{\left( {\frac{2}{{{{3}^{3}} + {{2}^{2}}}}} \right)}^{{2/3}}}\sqrt[3]{{\sqrt {({{3}^{3}} + {{2}^{2}}){{3}^{3}}} + ({{3}^{3}} + {{2}^{2}})}},$$

respectively. In frustrating magnetic field HAA1 (113), we have

$$\begin{gathered} \mathop {\lim }\limits_{T \to 0} S({{H}_{{AA1}}}) = \ln \left[ {\frac{1}{3}\left( {{{\vartheta }_{1}} + \frac{3}{{{{\vartheta }_{1}}}}} \right)} \right] \approx 0.281, \\ {{\vartheta }_{1}} = \sqrt[3]{{\frac{{\sqrt {({{3}^{3}} - {{2}^{2}}){{3}^{3}}} + {{3}^{3}}}}{2}}}, \\ \end{gathered} $$
((120))
$$\mathop {\lim }\limits_{T \to 0} M({{H}_{{AA1}}}) = \frac{1}{3}\left( {1 + {{\nu }_{1}} - \frac{{{{2}^{2}}}}{{{{3}^{3}} - {{2}^{2}}}}\frac{1}{{{{\nu }_{1}}}}} \right) \approx 0.177,$$
((121))
$${{\nu }_{1}} = {{\left( {\frac{2}{{{{3}^{3}} - {{2}^{2}}}}} \right)}^{{2/3}}}\sqrt[3]{{\sqrt {({{3}^{3}} - {{2}^{2}}){{3}^{3}}} - ({{3}^{3}} - {{2}^{2}})}},$$

while in frustrating magnetic field HAA2 (115), we get

$$\begin{gathered} \mathop {\lim }\limits_{T \to 0} S({{H}_{{AA2}}}) = \ln \left[ {{{\zeta }_{2}} + \frac{1}{2}\sqrt {\frac{1}{{{{\zeta }_{2}}}} - {{{(2{{\zeta }_{2}})}}^{2}}} } \right] \approx 0.199, \\ {{\zeta }_{2}} = \frac{1}{2}\sqrt {\frac{{{{\vartheta }_{2}}}}{3} - \frac{4}{{{{\vartheta }_{2}}}}} , \\ \end{gathered} $$
((122))
$${{\vartheta }_{2}} = \sqrt[3]{{\frac{{\sqrt {({{3}^{3}} + {{2}^{8}}){{3}^{3}}} + {{3}^{3}}}}{2}}},$$
$$\begin{gathered} \mathop {\lim }\limits_{T \to 0} M({{H}_{{AA2}}}) \\ = - {{\eta }_{2}} + \sqrt {\frac{{{{3}^{2}}}}{{{{3}^{3}} + {{2}^{8}}}} - \eta _{2}^{2} + \frac{2}{{{{3}^{3}} + {{2}^{8}}}}\frac{1}{{{{\eta }_{2}}}}} \approx 0.159, \\ \end{gathered} $$
((123))
$${{\eta }_{2}} = \sqrt {\frac{3}{{{{3}^{3}} + {{2}^{8}}}} + \frac{1}{{{{2}^{2}}}}\frac{{{{\nu }_{2}}}}{3} - \frac{{{{2}^{8}}}}{{{{{({{3}^{3}} + {{2}^{8}})}}^{2}}}}\frac{1}{{{{\nu }_{2}}}}} ,$$
$${{\nu }_{2}} = {{2}^{{2/3}}}\frac{{{{2}^{3}}}}{{{{3}^{3}} + {{2}^{8}}}}\sqrt[3]{{\sqrt {({{3}^{3}} + {{2}^{8}}){{3}^{3}}} + {{3}^{3}}}}.$$

In the ferro–antiferromagnetic variant of the exchange interaction parameters for spins at the site of the first and second neighbors (J1 > 0, J2 < 0) in frustrating magnetic field HFA (117), the zero-temperature entropy and magnetization of the system are given by

$$\begin{gathered} \mathop {\lim }\limits_{T \to 0} S({{H}_{{FA}}}) \\ = \ln \left[ {{{\zeta }_{3}} + \frac{1}{4} + \frac{1}{2}\sqrt {\frac{1}{{{{2}^{3}}}}\frac{1}{{{{\zeta }_{3}}}} - {{{(2{{\zeta }_{3}})}}^{2}} + \frac{3}{4}} } \right] \approx 0.322, \\ \end{gathered} $$
((124))
$${{\zeta }_{3}} = \frac{1}{2}\sqrt {\frac{{{{\vartheta }_{3}}}}{3} - \frac{4}{{{{\vartheta }_{3}}}} + \frac{1}{4}} ,$$
$${{\vartheta }_{3}} = \sqrt[3]{{\frac{{\sqrt {({{3}^{3}} + {{2}^{8}}){{3}^{3}}} - {{3}^{3}}}}{2}}},$$
$$\begin{gathered} \mathop {\lim }\limits_{T \to 0} M({{H}_{{FA}}}) \\ = {{\eta }_{3}} + \sqrt {\frac{{{{3}^{2}}}}{{{{3}^{3}} + {{2}^{8}}}} - \eta _{3}^{2} + \frac{2}{{{{3}^{3}} + {{2}^{8}}}}\frac{1}{{{{\eta }_{3}}}}} \approx 0.397, \\ \end{gathered} $$
((125))
$${{\eta }_{3}} = \sqrt {\frac{3}{{{{3}^{3}} + {{2}^{8}}}} + \frac{1}{{{{2}^{2}}}}\frac{{{{\nu }_{3}}}}{3} - \frac{{{{2}^{8}}}}{{{{{({{3}^{3}} + {{2}^{8}})}}^{2}}}}\frac{1}{{{{\nu }_{3}}}}} ,$$
$${{\nu }_{3}} = {{2}^{{2/3}}}\frac{{{{2}^{3}}}}{{{{3}^{3}} + {{2}^{8}}}}\sqrt[3]{{\sqrt {({{3}^{3}} + {{2}^{8}}){{3}^{3}}} + {{3}^{3}}}}.$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarubin, A.V., Kassan-Ogly, F.A., Proshkin, A.I. et al. Frustration Properties of the 1D Ising Model. J. Exp. Theor. Phys. 128, 778–807 (2019). https://doi.org/10.1134/S106377611904006X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611904006X

Navigation