Skip to main content
Log in

Polariton-Type Dispersion Laws for Three-Level Atoms Interacting with Two Laser Radiation Pulses

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Behavioral features of polariton dispersion laws are studied for three-level atoms interacting with two coherent laser radiation pulses with frequencies ω1 and ω2 that are in resonance with optically resolved one-photon transitions between levels \(1 \leftrightarrows 2\) and \(2 \leftrightarrows 3\), respectively, and with regard to the direct two-photon transition between levels 1 and 3. The approximation of given photon densities of both pulses compared with the densities of atoms is used. It is shown that the dispersion law consists of three branches whose position and shape are determined by the Rabi frequencies of the above three optical transitions and the photon densities in both pulses. The direct consideration of all three optical transitions leads to the dependence of the dispersion law of atomic polaritons on a new quantum parameter—the phase difference between the three Rabi frequencies. The values of the system parameters are found for which the branches of the dispersion law may intersect. The concept of the surface of the dispersion law is introduced in the dependence of the eigenfrequencies of atomic polaritons on the photon wave vectors in both pulses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. H. Deng, H. Haug, and Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010).

    Article  ADS  Google Scholar 

  2. I. Carusotto and C. Ciuti, Rev. Mod. Phys. 85, 299 (2013).

    Article  ADS  Google Scholar 

  3. Y. Kasprzak, M. Richard, S. Kindermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and L. S. Dang, Nature (London, U.K.) 443, 409 (2006).

    Article  ADS  Google Scholar 

  4. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Science (Washington, DC, U. S.) 316, 1007 (2007).

    Article  ADS  Google Scholar 

  5. A. Kogar, M. S. Rak, S. Vig, A. A. Husain, F. Flicker, Y. I. Joe, L. Venema, G. J. MacDougall, T. C. Chiang, E. Fradkin, Y. van Vezel, and P. Abbamonte, Science (Washington, DC, U. S.) 358, 1314 (2017).

    Article  ADS  Google Scholar 

  6. V. Agranovich, H. Benisty, and C. Weisbuch, Solid State Commun. 102, 631 (1997).

    Article  ADS  Google Scholar 

  7. O. A. Dubovskii and V. M. Agranovich, Phys. Solid State 58, 1420 (2016).

    Article  ADS  Google Scholar 

  8. P. Cristofolini, G. Christmann, S. I. Tsintzos, G. Deligeorgis, G. Konstantinidis, Z. Hatzopoulos, P. G. Savvidis, and J. J. Baumberg, Science (Washington, DC, U. S.) 336, 704 (2012).

    Article  ADS  Google Scholar 

  9. E. Togan, H.-T. Lim, S. Faelt, W. Wegscheider, and A. Imamoglu, arXiv:1804.04975.

  10. D. I. Gruev, Sov. J. Quantum Electron. 5, 1355 (1975).

    Article  ADS  Google Scholar 

  11. M. L. Ter-Mikaelyan, Phys. Usp. 40, 1195 (1997).

    Article  ADS  Google Scholar 

  12. T. C. H. Liew and A. V. Kavokin, arXiv:1706.08635.

  13. T. C. H. Liew, M. M. Glazov, K. V. Kavokin, I. A. Shelykh, M. A. Kaliteevski, and A. V. Kavokin, Phys. Rev. Lett. 110, 047402 (2013).

    Article  ADS  Google Scholar 

  14. M. I. Shmiglyuk and P. I. Bardetskii, Laser Spectroscopy of Excitons in Semiconductors (Shtiintsa, Kishinev, 1980) [in Russian].

  15. S. Bounouar, M. Strauß, A. Carmele, P. Schnauber, A. Thoma, M. Cschrey, J.-H. Schulze, A. Strittmatter, S. Rodt, A. Knorr, and S. Reitzenstein, Phys. Rev. Lett. 118, 233601 (2017).

    Article  ADS  Google Scholar 

  16. E. D. Valle, S. Zippilli, F. P. Laussy, A. Gonzalez-Tudela, G. Morigi, and C. Tejedor, Phys. Rev. B 81, 035302 (2010).

    Article  ADS  Google Scholar 

  17. S. M. Yoshida, S. Endo, J. Levinsen, and M. M. Parish, Phys. Rev. X 8, 011024 (2018).

    Google Scholar 

  18. J. Levinsen, F. M. Marchetti, J. Keeling, and M. M. Parish, arXiv:1806.10835.

  19. P. Wen, G. Christmann, J. J. Baumberg, and K. A. Nelson, New J. Phys. 15, 025005 (2013).

    Article  ADS  Google Scholar 

  20. N. Takemura, S. Trebaol, M. Wouters, M. T. Portella-Oberli, and B. Deveaud, Nat. Phys. 10, 500 (2014).

    Article  Google Scholar 

  21. N. Takemura, M. D. Anderson, M. Navadeh-Toupchi, D. Y. Oberli, M. T. Portella-Oberli, and B. Deveaud, Phys. Rev. B 95, 205303 (2017).

    Article  ADS  Google Scholar 

  22. I. Carusotto, T. Volz, and A. Imamom\(\overset{}{\mathop{\text{g}}}\,\)lu, Europhys. Lett. 90, 37001 (2010).

    Article  ADS  Google Scholar 

  23. B. Pietka, N. Bobrovska, D. Stephan, M. Teich, M. Krol, S. Winnerl, A. Pashkin, R. Mirek, K. Lekenta, F. Morier-Genoud, H. Schneider, B. Deveaud, M. Helm, M. Matuszewski, and Y. Szczytko, Phys. Rev. Lett. 119, 077403 (2017); arXiv:1704.06547.

  24. Y. He, Y.-M. He, Y. Liu, Y.-J. Wei, H. Y. Ramirez, M. Atatüre, C. Schneider, M. Kamp, S. Höfling, C.‑Y. Lu, and Y.-W. Pan, Phys. Rev. Lett. 114, 097402 (2015).

    Article  ADS  Google Scholar 

  25. Y. L. Tomaino, A. D. Yameson, Y.-S. Lee, G. Khitrova, H. M. Gibbs, A. C. Klettke, M. Kira, and S. W. Koch, Phys. Rev. Lett. 108, 267402 (2012).

    Article  ADS  Google Scholar 

  26. C. Qian, S. Wu, F. Song, K. Peng, X. Xie, J. Yang, S. Xiao, M. J. Steer, I. G. Thayne, C. Tang, Z. Zuo, K. Yin, C. Gu, and X. Xu, Phys. Rev. Lett. 120, 213901 (2018); arXiv:1805.09184.

  27. L. C. Flatten, S. Christodoulou, R. K. Patel, A. Buccheri, D. M. Coles, B. P. L. Reid, R. A. Taylor, I. Moreels, and J. M. Smithl, arXiv:1608.05294.

  28. Y. Ota, S. Iwamoto, N. Kumagai, and Y. Arakawa, Phys. Rev. Lett. 107, 233602 (2011).

    Article  ADS  Google Scholar 

  29. M. Orniggoti, G. della Valle, T. T. Fernandez, A. Coppa, V. Foglietti, P. Laporta, and S. Longhi, J. Phys. B: At. Mol. Opt. Phys. 41, 085402 (2008).

    Article  ADS  Google Scholar 

  30. P. I. Khadzhi, Nonlinear Optical Processes in the System of Excitons and Biexcitons in Semiconductors (Shtiintsa, Kishinev, 1985) [in Russian].

  31. P. I. Khadzhi, L. Yu. Nad’kin, and D. A. Markov, Phys. Solid State 60, 663 (2018).

    Article  ADS  Google Scholar 

  32. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge Univ., Cambridge, 1997), Chap. 14.

    Book  Google Scholar 

  33. G. Korn and T. Korn, Mathematical Handbook for Scientists and Engineers (Nauka, Moscow, 1978; McGraw-Hill, New York, 1961).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Korovai.

Additional information

Translated by I. Nikitin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khadzhi, P.I., Korovai, O.V. & Nad’kin, L.Y. Polariton-Type Dispersion Laws for Three-Level Atoms Interacting with Two Laser Radiation Pulses. J. Exp. Theor. Phys. 128, 530–543 (2019). https://doi.org/10.1134/S1063776119030075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119030075

Navigation