Reminiscence of a Magnetization Plateau in a Magnetization Processes of Toy-Model Triangular and Tetrahedral Clusters

  • V. N. GlazkovEmail author


We discuss magnetization curves of a toy-model trigonal and tetrahedral clusters. Nonlinearity of magnetization with local minimum of differential susceptibility resembling known magnetization plateaus of triangular-lattice and pyrochlore lattice antiferromagnets is observed at intermediate temperature range JT ≲ Θ (here, J is the exchange coupling constant and Θ is a Curie–Weiss temperature). This behavior is due to increased statistical weight of the states with intermediate total spin of the cluster, which is related to the “order-by-disorder” mechanism of plateau stabilization of a macroscopic frustrated magnet.



Author thanks Prof. L.E. Svistov (Kapitza Institute) for drawing attention to this problem and Prof. A.I. Smirnov (Kapitza Institute) for providing experimental data for comparison and useful discussions.

The work was supported by Russian Science Foundation Grant no. 17-02-01505, author work at HSE was supported by Program of fundamental studies of Higher School of Economics.


  1. 1.
    A. P. Ramirez, Ann. Rev. Mater. Sci. 24, 453 (1994).ADSCrossRefGoogle Scholar
  2. 2.
    J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys. 82, 53 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    Introduction to Frustrated Magnetism: Materials, Experiments, Theory , Ed. by C. Lacroix, Ph. Mendels, and F. Mila, (Springer Science, New York, 2011).Google Scholar
  4. 4.
    A. V. Chubokov and D. I. Golosov, J. Phys.: Condens. Matter 3, 69 (1991).ADSGoogle Scholar
  5. 5.
    S. Nishimoto, N. Shibata, and Ch. Hotta, Nat. Comm. 4, 2287 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Motome, K. Penc, and N. Shannon, J. Magn. Magn. Matter. 300, 57 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    A. Honecker, J. Schulenburg, and J. Richter, J. Phys.: Condens. Matter 16, S749 (2004).ADSGoogle Scholar
  8. 8.
    K. Morita, T. Sugimoto, Sh. Sota, and T. Tohyama, Phys. Rev. B 97, 014412 (2018).ADSCrossRefGoogle Scholar
  9. 9.
    T. Inami, Y. Ajiro, and Ts. Goto, J. Phys. Soc. Jpn. 65, 2374 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    L. E. Svistov, A. I. Smirnov, L. A. Prozorova, O. A. Petrenko, A. Micheler, N. Buttgen, A. Ya. Shapiro, and L. N. Demianets, Phys. Rev. B 74, 024412 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    H. Ueda, H. Mitamura, T. Goto, and Y. Ueda, Phys. Rev. B 73, 094415 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    N. Shannon, H. Ueda, Y. Motome, K. Penc, H. Shiba, and H. Takagi, J. Phys.: Conf. Ser. 51, 31 (2006).ADSGoogle Scholar
  13. 13.
    K. Okuta, Sh. Hara, H. Sato, Y. Narumi, and K. Kindo, J. Phys. Soc. Jpn. 80, 063703 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    A. I. Smirnov, T. A. Soldatov, O. A. Petrenko, A. Takata, T. Kida, M. Hagiwara, A. Ya. Shapiro, and M. E. Zhitomirsky, Phys. Rev. Lett. 119, 047204 (2017).ADSCrossRefGoogle Scholar
  15. 15. Scholar
  16. 16.
    C. Schöder, H. Nojiri, Jürgen Schnack, P. Hage, M. Luban, and P. Kögerler, Phys. Rev. Lett 94, 017205 (2005).Google Scholar
  17. 17.
    J. Schnack, Journal of Low Temperature Physics, 142, 283 (2006). Scholar
  18. 18.
    A. Honecker and M. E. Zhitomirsky, J. Phys.: Conf. Ser. 145, 012082 (2009).Google Scholar
  19. 19.
    M. E. Zhitomirsky, Phys. Rev. B 67, 104421 (2003).ADSCrossRefGoogle Scholar
  20. 20.
    S. S. Sosin, L. A. Prozorova, A. I. Smirnov, A. I. Golov, I. B. Berkutov, O. A. Petrenko, G. Balakrishnan, and M. E. Zhitomirsky, Phys. Rev. B 71, 094413 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    Orion Ciftja, Marshall Luban, Mark Auslender, and James H. Luscombe, Phys. Rev. B 60, 10122 (1999).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2019

Authors and Affiliations

  1. 1.Kapitza Institute for Physical Problems, Russian Academy of SciencesMoscowRussia
  2. 2.International Laboratory for Condensed Matter Physics, National Research University “Higher School of Economics”MoscowRussia

Personalised recommendations