# Reminiscence of a Magnetization Plateau in a Magnetization Processes of Toy-Model Triangular and Tetrahedral Clusters

- 15 Downloads

### Abstract

We discuss magnetization curves of a toy-model trigonal and tetrahedral clusters. Nonlinearity of magnetization with local minimum of differential susceptibility resembling known magnetization plateaus of triangular-lattice and pyrochlore lattice antiferromagnets is observed at intermediate temperature range *J* ≲ *T* ≲ Θ (here, *J* is the exchange coupling constant and Θ is a Curie–Weiss temperature). This behavior is due to increased statistical weight of the states with intermediate total spin of the cluster, which is related to the “order-by-disorder” mechanism of plateau stabilization of a macroscopic frustrated magnet.

## Notes

### ACKNOWLEDGMENTS

Author thanks Prof. L.E. Svistov (Kapitza Institute) for drawing attention to this problem and Prof. A.I. Smirnov (Kapitza Institute) for providing experimental data for comparison and useful discussions.

The work was supported by Russian Science Foundation Grant no. 17-02-01505, author work at HSE was supported by Program of fundamental studies of Higher School of Economics.

## REFERENCES

- 1.A. P. Ramirez, Ann. Rev. Mater. Sci.
**24**, 453 (1994).ADSCrossRefGoogle Scholar - 2.J. S. Gardner, M. J. P. Gingras, and J. E. Greedan, Rev. Mod. Phys.
**82**, 53 (2010).ADSCrossRefGoogle Scholar - 3.
*Introduction to Frustrated Magnetism: Materials, Experiments,**Theory*, Ed. by C. Lacroix, Ph. Mendels, and F. Mila, (Springer Science, New York, 2011).Google Scholar - 4.A. V. Chubokov and D. I. Golosov, J. Phys.: Condens. Matter
**3**, 69 (1991).ADSGoogle Scholar - 5.S. Nishimoto, N. Shibata, and Ch. Hotta, Nat. Comm.
**4**, 2287 (2013).ADSCrossRefGoogle Scholar - 6.Y. Motome, K. Penc, and N. Shannon, J. Magn. Magn. Matter.
**300**, 57 (2006).ADSCrossRefGoogle Scholar - 7.A. Honecker, J. Schulenburg, and J. Richter, J. Phys.: Condens. Matter
**16**, S749 (2004).ADSGoogle Scholar - 8.K. Morita, T. Sugimoto, Sh. Sota, and T. Tohyama, Phys. Rev. B
**97**, 014412 (2018).ADSCrossRefGoogle Scholar - 9.T. Inami, Y. Ajiro, and Ts. Goto, J. Phys. Soc. Jpn.
**65**, 2374 (1996).ADSCrossRefGoogle Scholar - 10.L. E. Svistov, A. I. Smirnov, L. A. Prozorova, O. A. Petrenko, A. Micheler, N. Buttgen, A. Ya. Shapiro, and L. N. Demianets, Phys. Rev. B
**74**, 024412 (2006).ADSCrossRefGoogle Scholar - 11.H. Ueda, H. Mitamura, T. Goto, and Y. Ueda, Phys. Rev. B
**73**, 094415 (2006).ADSCrossRefGoogle Scholar - 12.N. Shannon, H. Ueda, Y. Motome, K. Penc, H. Shiba, and H. Takagi, J. Phys.: Conf. Ser.
**51**, 31 (2006).ADSGoogle Scholar - 13.K. Okuta, Sh. Hara, H. Sato, Y. Narumi, and K. Kindo, J. Phys. Soc. Jpn.
**80**, 063703 (2011).ADSCrossRefGoogle Scholar - 14.A. I. Smirnov, T. A. Soldatov, O. A. Petrenko, A. Takata, T. Kida, M. Hagiwara, A. Ya. Shapiro, and M. E. Zhitomirsky, Phys. Rev. Lett.
**119**, 047204 (2017).ADSCrossRefGoogle Scholar - 15.https://www.gnu.org/software/octave/.Google Scholar
- 16.C. Schöder, H. Nojiri, Jürgen Schnack, P. Hage, M. Luban, and P. Kögerler, Phys. Rev. Lett
**94**, 017205 (2005).Google Scholar - 17.J. Schnack, Journal of Low Temperature Physics,
**142**, 283 (2006). https://doi.org/10.1007/s10909-006-9184-xGoogle Scholar - 18.A. Honecker and M. E. Zhitomirsky, J. Phys.: Conf. Ser.
**145**, 012082 (2009).Google Scholar - 19.M. E. Zhitomirsky, Phys. Rev. B
**67**, 104421 (2003).ADSCrossRefGoogle Scholar - 20.S. S. Sosin, L. A. Prozorova, A. I. Smirnov, A. I. Golov, I. B. Berkutov, O. A. Petrenko, G. Balakrishnan, and M. E. Zhitomirsky, Phys. Rev. B
**71**, 094413 (2005).ADSCrossRefGoogle Scholar - 21.Orion Ciftja, Marshall Luban, Mark Auslender, and James H. Luscombe, Phys. Rev. B
**60**, 10122 (1999).Google Scholar