Skip to main content
Log in

Electron–Phonon Coupling in Eliashberg–McMillan Theory Beyond Adiabatic Approximation

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Eliashberg–McMillan theory of superconductivity is essentially based on the adiabatic approximation. Small parameter of perturbation theory is given by λ\(\frac{{{{\Omega }_{0}}}}{{{{E}_{{\text{F}}}}}}\) ≪ 1, where λ is the dimensionless electron–phonon coupling constant, Ω0 is characteristic phonon frequency, while EF is Fermi energy of electrons. Here we present an attempt to describe the electron–phonon interaction within Eliashberg–McMillan approach in situation, when characteristic phonon frequency Ω0 becomes large enough (comparable to, or exceeding, the Fermi energy EF). We consider the general definition of electron–phonon pairing coupling constant λ, taking into account the finite value of phonon frequency. Also, we obtain the simple expression for generalized coupling constant \(\tilde {\lambda }\) that determines the mass renormalization, with the account of finite width of conduction band, which describes the smooth transition from the adiabatic regime to the region of strong nonadiabaticity. In the case of strong nonadiabaticity, when Ω0EF, the new small parameter appears, λ\(\frac{{{{E}_{{\text{F}}}}}}{{{{\Omega }_{0}}}}\) ~ λ\(\frac{D}{{{{\Omega }_{0}}}}\) ≪ 1 (D is conduction band half-width), and corrections to electronic spectrum become irrelevant. At the same time, the temperature of superconducting transition Tc in antiadiabatic limit is still determined by Eliashberg–McMillan coupling constant λ, while the preexponential factor in the expression for Tc, conserving the form typical of weak-coupling theory, is determined by the bandwidth (Fermi energy). For the case of interaction with a single optical phonon, we derive the single expression for Tc, valid both in adiabatic and antiadiabatic regimes and describing the continuous transition between these two limiting cases. The results obtained are discussed in the context of superconductivity in FeSe/STO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. D. J. Scalapino, in Superconductivity, Ed. by R. D. Parks (Marcel Dekker, New York, 1969), p. 449.

    Google Scholar 

  2. S. V. Vonsovsky, Yu. A. Izyumov, and E. Z. Kurmaev, Superconductivity of Transition Metals, Their Alloys and Compounds (Nauka, Moscow, 1977; Springer, Berlin, Heidelberg, 1982).

  3. P. B. Allen and B. Mitrović, Solid State Physics, Ed. by F. Seitz, D. Turnbull, and H. Ehrenreich (Academic, New York, 1982), Vol. 37, p. 1

    Google Scholar 

  4. L. P. Gor’kov and V. Z. Kresin, Rev. Mod. Phys. 90, 011001 (2018)

    Article  ADS  Google Scholar 

  5. A. B. Migdal, Sov. Phys. JETP 7, 996 (1958).

    Google Scholar 

  6. A. S. Alexandrov and A. B. Krebs, Phys. Usp. 35, 345 (1992).

    Article  ADS  Google Scholar 

  7. I. Esterlis, B. Nosarzewski, E. W. Huang, D. Moritz, T. P. Devereux, D. J. Scalapino, and S. A. Kivelson, Phys. Rev. B 97, 140501(R) (2018)

  8. M. V. Sadovskii, Phys. Usp. 51, 1243 (2008).

    Article  Google Scholar 

  9. L. P. Gor’kov, Phys. Rev. B 93, 054517 (2016)

    Article  ADS  Google Scholar 

  10. L. P. Gor’kov, Phys. Rev. B 93, 060507 (2016)

    Article  ADS  Google Scholar 

  11. J. R. Schrieffer, Theory of Superconductivity (Fizmatlit, Moscow, 1968; W. A. Benjamin, New York, 1964).

  12. M. V. Sadovskii, Diagrammatics (ICS, Moscow, Izhevsk, 2010; World Scientific, Singapore, 2006).

  13. P. B. Allen, Phys. Rev. B 6, 2577 (1972)

    Article  ADS  Google Scholar 

  14. M. Kulić, AIP Conf. Proc. 715, 75 (2004) arXiv:1712.06222

  15. J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y. T. Cui, W. Li, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P. Devereaux, D. H. Lee, and Z. X. Shen, Nature (London, U.K.) 515, 245 (2014)

    Article  ADS  Google Scholar 

  16. O. V. Danylenko, O. V. Dolgov, M. L. Kulic[acute], and V. Oudovenko, Eur. J. Phys. B 9, 201 (1999)

    ADS  Google Scholar 

  17. M. L. Kulic[acute], AIP Conf. Proc. 715, 75 (2004)

    Article  ADS  Google Scholar 

  18. L. Rademaker, Y. Wang, T. Berlijn, and S. Johnston, New J. Phys. 18, 022001 (2016)

    Article  ADS  Google Scholar 

  19. Y. Wang, K. Nakatsukasa, L. Rademaker, T. Berlijn, and S. Johnston, Supercond. Sci. Technol. 29, 054009 (2016)

    Article  ADS  Google Scholar 

  20. I. A. Nekrasov, N. S. Pavlov, and V. V. Sadovskii, JETP Lett. 105, 370 (2017).

    Article  ADS  Google Scholar 

  21. I. A. Nekrasov, N. S. Pavlov, and M. V. Sadovskii, J. Exp. Theor. Phys. 126, 485 (2018).

    Article  ADS  Google Scholar 

  22. Fengmiao Li and G. A. Sawatzky, Phys. Rev. Lett. 120, 237001 (2018)

    Article  ADS  Google Scholar 

  23. Y. Wang, A. Linscheid, T. Berlijn, and S. Johnson, Phys. Rev. B 93, 134513 (2016)

    Article  ADS  Google Scholar 

  24. M. A. Ikeda, A. Ogasawara, and M. Sugihara, Phys. Lett. A 170, 319 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Sadovskii.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovskii, M.V. Electron–Phonon Coupling in Eliashberg–McMillan Theory Beyond Adiabatic Approximation. J. Exp. Theor. Phys. 128, 455–463 (2019). https://doi.org/10.1134/S1063776119020122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119020122

Navigation