Anisotropic Thermal and Mechanical Characteristics of Graphene: A Molecular Dynamics Study


In the present work, molecular dynamics simulation has been performed to characterize the thermal and mechanical behavior of graphene sheet. For this purpose, graphene sheet is subjected to dynamic heating process and its melting point has been predicted. Structural and thermal properties have been analyzed using radial distribution function and energy per atom. To analyze factors affecting melting temperature, four graphene sheets with different dimensions have been chosen for the dynamic heating process. The melting temperature of graphene decreases with increase in the sheet dimension, hence graphene sheet having smaller dimensions show relatively better thermal stability. To analyze the mechanical behavior, graphene sheet has been subjected to uniaxial tensile loading along zigzag and armchair directions respectively. It is observed that zigzag-oriented graphene sheet shows high fracture strength and stability as compared to armchair direction. Multilayer graphene sheets have been selected to investigate the effect of multilayers on the mechanical strength. It can be revealed from results that fracture strength decreases with increase in layers, however, brittleness of the sample relatively decreases with increase in a number of graphene layers.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.


  1. 1

    Q. Zhou and A. Zettl, Appl. Phys. Lett. 42, 3109 (2003).

    Google Scholar 

  2. 2

    C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science (Washington, DC, U. S.) 321, 385 (2008).

    ADS  Article  Google Scholar 

  3. 3

    K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, and I. V. Grigorieva, Nature (London, U.K.) 438, 197 (2005).

    ADS  Article  Google Scholar 

  4. 4

    E. Pop, V. Varshney, and A. K. Roy, MRS Bull. 37, 1273 (2012).

    Article  Google Scholar 

  5. 5

    H. O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes: Properties, Processing, and Applications (Noyes, Park Ridge, NJ, 1993).

    Google Scholar 

  6. 6

    M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).

    ADS  Article  Google Scholar 

  7. 7

    Y. Kim, J. Lee, M. Yeom, J. Shin, H. Kim, Y. Cui, J. Kysar, J. Hone, Y. Jung, S. Jeon, and S. Han, Nat. Commun. 4 2114 (2013).

    ADS  Article  Google Scholar 

  8. 8

    B. Wunderlich, Thermal Analysis (Academic, New York, 1990).

    Google Scholar 

  9. 9

    G. Cao, Polymers 6, 2404 (2014).

    Article  Google Scholar 

  10. 10

    Y. P. Zhang and C. X. Pan, Diamond Relat. Mater. 24, 1 (2012).

    ADS  Article  Google Scholar 

  11. 11

    J. W. Jiang, J. S. Wang, and B. Li, Phys. Rev. B 80, 113405 (2009).

    ADS  Article  Google Scholar 

  12. 12

    Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, and Y. Chen, Phys. B (Amsterdam, Neth.) 405, 1301 (2010).

  13. 13

    F. Liu, P. Ming, and J. Li, Phys. Rev. B 76, 064120 (2007).

    ADS  Article  Google Scholar 

  14. 14

    S. Wang, B. Yang, S. Zhang, and J. Yuan, ChemPhysChem 15, 2749 (2014).

    Article  Google Scholar 

  15. 15

    B. Mortazavi, Y. Remond, S. Ahzi, and V. Toniazzo, Comput. Mater. Sci. 53, 298 (2012).

    Article  Google Scholar 

  16. 16

    J. R. Xiao, J. Staniszewski, and J. W. Gillespie, Jr., Mater. Sci. Eng. A 527, 715 (2010).

    Article  Google Scholar 

  17. 17

    M. Z. Islam, M. Mehboob, L. R. Lowe, and E. S. Bechtel, J. Phys. D: Appl. Phys. 47, 409501 (2014).

    Article  Google Scholar 

  18. 18

    A. A. Balandin, Nat. Mater. 10, 569 (2011).

    ADS  Article  Google Scholar 

  19. 19

    C. O. Girit et al., Science (Washington, DC, U. S.) 323, 1705 (2009).

    ADS  Article  Google Scholar 

  20. 20

    K. Suenaga and M. Koshino, Nature (London, U.K.) 468, 1088 (2010).

    ADS  Article  Google Scholar 

  21. 21

    J. C. Meyer et al., Nature (London, U.K.) 446, 60 (2007).

    ADS  Article  Google Scholar 

  22. 22

    B. Butz et al., Nature (London, U.K.) 505, 533 (2014).

    ADS  Article  Google Scholar 

  23. 23

    A. A. Balandin et al., Nano Lett. 8, 902 (2008).

    ADS  Article  Google Scholar 

  24. 24

    R. Grantab, V. B. Shenoy, and R. S. Ruoff, Science (Washington, DC, U. S.) 330, 946 (2010).

    ADS  Article  Google Scholar 

  25. 25

    G. H. Lee et al., Science (Washington, DC, U. S.) 340, 1073 (2013).

    ADS  Article  Google Scholar 

  26. 26

    J. H. Lee, P. E. Loya, J. Lou, and E. L. Thomas, Science (Washington, DC, U. S.) 346, 1092 (2014).

    ADS  Article  Google Scholar 

  27. 27

    J. S. Choi et al., Science (Washington, DC, U. S.) 333, 607 (2011).

    ADS  Article  Google Scholar 

  28. 28

    S. J. Plimpton, J. Comput. Phys. 117, 1 (1995).

    ADS  Article  Google Scholar 

  29. 29

    Visual Molecular Dynamics (VMD).

  30. 30

    D. W. Brenner, Phys. Rev. B 42, 9458 (1990).

    ADS  Article  Google Scholar 

  31. 31

    S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).

    ADS  Article  Google Scholar 

  32. 32

    Guoxin Cao, Polymers 6, 2404 (2014).

    Article  Google Scholar 

  33. 33

    G. Barbarino, C. Melis, and L. Colombo, Carbon 80, 167 (2014).

    Article  Google Scholar 

  34. 34

    F. Gayk, J. Ehrens, T. Heitmann, P. Vorndamme, A. Mrugalla, and J. Schnack, Young’s Moduli of Carbon Materials Investigated by Various Classical Molecular Dynamics Schemes.

  35. 35

    E. F. Sheka, N. A. Popova, V. A. Popova, E. A. Nikitina, and L. H. Shaymardanova, J. Exp. Theor. Phys. 112, 602 (2011).

    ADS  Article  Google Scholar 

  36. 36

    Shuaiwei Wang, Baocheng Yang, Jinyun Yuan, Yubing Si, and Houyang Chen, Sci. Rep. 5, 14957 (2015).

    ADS  Article  Google Scholar 

  37. 37

    Yongping Zheng, Lanqing Xu, Zheyong Fan, Ning Wei, Yu Lu, and Zhigao Huang, Curr. Nanosci. 8, 89 (2012).

    ADS  Article  Google Scholar 

  38. 38

    M. C. Wang, C. Yan, L. Ma, N. Hu, and M. W. Chen, Comput. Mater. Sci. 54, 236 (2012).

    Article  Google Scholar 

  39. 39

    Yulin Yang and Xinmiao Xu, Comput. Mater. Sci. 61, 83 (2012).

    Article  Google Scholar 

  40. 40

    Ch.-W. Pao, T.-H. Liu, Ch.-Ch. Chang, and D. J. Srolovitz, Carbon 50, 2870 (2012).

    Article  Google Scholar 

  41. 41

    J. Zhu, M. He, and F. Qiu, Chin. J. Chem. 30, 1399 (2012).

    Article  Google Scholar 

  42. 42

    T. Y. Ng, J. J. Yeo, and Z. S. Liu, Carbon 50, 4887 (2012).

    Article  Google Scholar 

  43. 43

    M. C. Wang, C. Yan, L. Ma, and N. Hu, Comput. Mater. Sci. 68, 138 (2013).

    Article  Google Scholar 

  44. 44

    A. P. Thompson, S. J. Plimpton, and W. Mattson, J. Chem. Phys. 131, 154107 (2009).

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Muhammad Imran or Fayyaz Hussain.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muhammad Imran, Hussain, F., Khalil, R.M. et al. Anisotropic Thermal and Mechanical Characteristics of Graphene: A Molecular Dynamics Study. J. Exp. Theor. Phys. 128, 259–267 (2019).

Download citation