Abstract
In the present work, molecular dynamics simulation has been performed to characterize the thermal and mechanical behavior of graphene sheet. For this purpose, graphene sheet is subjected to dynamic heating process and its melting point has been predicted. Structural and thermal properties have been analyzed using radial distribution function and energy per atom. To analyze factors affecting melting temperature, four graphene sheets with different dimensions have been chosen for the dynamic heating process. The melting temperature of graphene decreases with increase in the sheet dimension, hence graphene sheet having smaller dimensions show relatively better thermal stability. To analyze the mechanical behavior, graphene sheet has been subjected to uniaxial tensile loading along zigzag and armchair directions respectively. It is observed that zigzag-oriented graphene sheet shows high fracture strength and stability as compared to armchair direction. Multilayer graphene sheets have been selected to investigate the effect of multilayers on the mechanical strength. It can be revealed from results that fracture strength decreases with increase in layers, however, brittleness of the sample relatively decreases with increase in a number of graphene layers.
This is a preview of subscription content, access via your institution.













REFERENCES
- 1
Q. Zhou and A. Zettl, Appl. Phys. Lett. 42, 3109 (2003).
- 2
C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science (Washington, DC, U. S.) 321, 385 (2008).
- 3
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, and I. V. Grigorieva, Nature (London, U.K.) 438, 197 (2005).
- 4
E. Pop, V. Varshney, and A. K. Roy, MRS Bull. 37, 1273 (2012).
- 5
H. O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes: Properties, Processing, and Applications (Noyes, Park Ridge, NJ, 1993).
- 6
M. Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).
- 7
Y. Kim, J. Lee, M. Yeom, J. Shin, H. Kim, Y. Cui, J. Kysar, J. Hone, Y. Jung, S. Jeon, and S. Han, Nat. Commun. 4 2114 (2013).
- 8
B. Wunderlich, Thermal Analysis (Academic, New York, 1990).
- 9
G. Cao, Polymers 6, 2404 (2014).
- 10
Y. P. Zhang and C. X. Pan, Diamond Relat. Mater. 24, 1 (2012).
- 11
J. W. Jiang, J. S. Wang, and B. Li, Phys. Rev. B 80, 113405 (2009).
- 12
Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi, and Y. Chen, Phys. B (Amsterdam, Neth.) 405, 1301 (2010).
- 13
F. Liu, P. Ming, and J. Li, Phys. Rev. B 76, 064120 (2007).
- 14
S. Wang, B. Yang, S. Zhang, and J. Yuan, ChemPhysChem 15, 2749 (2014).
- 15
B. Mortazavi, Y. Remond, S. Ahzi, and V. Toniazzo, Comput. Mater. Sci. 53, 298 (2012).
- 16
J. R. Xiao, J. Staniszewski, and J. W. Gillespie, Jr., Mater. Sci. Eng. A 527, 715 (2010).
- 17
M. Z. Islam, M. Mehboob, L. R. Lowe, and E. S. Bechtel, J. Phys. D: Appl. Phys. 47, 409501 (2014).
- 18
A. A. Balandin, Nat. Mater. 10, 569 (2011).
- 19
C. O. Girit et al., Science (Washington, DC, U. S.) 323, 1705 (2009).
- 20
K. Suenaga and M. Koshino, Nature (London, U.K.) 468, 1088 (2010).
- 21
J. C. Meyer et al., Nature (London, U.K.) 446, 60 (2007).
- 22
B. Butz et al., Nature (London, U.K.) 505, 533 (2014).
- 23
A. A. Balandin et al., Nano Lett. 8, 902 (2008).
- 24
R. Grantab, V. B. Shenoy, and R. S. Ruoff, Science (Washington, DC, U. S.) 330, 946 (2010).
- 25
G. H. Lee et al., Science (Washington, DC, U. S.) 340, 1073 (2013).
- 26
J. H. Lee, P. E. Loya, J. Lou, and E. L. Thomas, Science (Washington, DC, U. S.) 346, 1092 (2014).
- 27
J. S. Choi et al., Science (Washington, DC, U. S.) 333, 607 (2011).
- 28
S. J. Plimpton, J. Comput. Phys. 117, 1 (1995).
- 29
Visual Molecular Dynamics (VMD). http://www.ks.uiuc.edu.
- 30
D. W. Brenner, Phys. Rev. B 42, 9458 (1990).
- 31
S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).
- 32
Guoxin Cao, Polymers 6, 2404 (2014).
- 33
G. Barbarino, C. Melis, and L. Colombo, Carbon 80, 167 (2014).
- 34
F. Gayk, J. Ehrens, T. Heitmann, P. Vorndamme, A. Mrugalla, and J. Schnack, Young’s Moduli of Carbon Materials Investigated by Various Classical Molecular Dynamics Schemes. https://scirate.com/arxiv/cond-mat.mtrl-sci.
- 35
E. F. Sheka, N. A. Popova, V. A. Popova, E. A. Nikitina, and L. H. Shaymardanova, J. Exp. Theor. Phys. 112, 602 (2011).
- 36
Shuaiwei Wang, Baocheng Yang, Jinyun Yuan, Yubing Si, and Houyang Chen, Sci. Rep. 5, 14957 (2015).
- 37
Yongping Zheng, Lanqing Xu, Zheyong Fan, Ning Wei, Yu Lu, and Zhigao Huang, Curr. Nanosci. 8, 89 (2012).
- 38
M. C. Wang, C. Yan, L. Ma, N. Hu, and M. W. Chen, Comput. Mater. Sci. 54, 236 (2012).
- 39
Yulin Yang and Xinmiao Xu, Comput. Mater. Sci. 61, 83 (2012).
- 40
Ch.-W. Pao, T.-H. Liu, Ch.-Ch. Chang, and D. J. Srolovitz, Carbon 50, 2870 (2012).
- 41
J. Zhu, M. He, and F. Qiu, Chin. J. Chem. 30, 1399 (2012).
- 42
T. Y. Ng, J. J. Yeo, and Z. S. Liu, Carbon 50, 4887 (2012).
- 43
M. C. Wang, C. Yan, L. Ma, and N. Hu, Comput. Mater. Sci. 68, 138 (2013).
- 44
A. P. Thompson, S. J. Plimpton, and W. Mattson, J. Chem. Phys. 131, 154107 (2009).
Author information
Affiliations
Corresponding authors
Additional information
The article is published in the original.
Rights and permissions
About this article
Cite this article
Muhammad Imran, Hussain, F., Khalil, R.M. et al. Anisotropic Thermal and Mechanical Characteristics of Graphene: A Molecular Dynamics Study. J. Exp. Theor. Phys. 128, 259–267 (2019). https://doi.org/10.1134/S1063776119020079
Received:
Revised:
Accepted:
Published:
Issue Date: