Skip to main content
Log in

Energy Conservation in Distributed Interference as a Guarantee for Detecting a Detector Blinding Attack in Quantum Cryptography

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

An avalanche single-photon detector blinding attack is one of the methods for quantum hacking of quantum key distribution (QKD) systems. The attack was experimentally demonstrated for both phase- and polarization-encoded QKD systems. During this attack, an eavesdropper knows the entire key, does not produce errors and саnnot be detected. However, the phase encoding has neglected some significant features of the photocount statistics in the receiving party. It is shown in the paper at the level of fundamental principles that this attack changes the photocount statistics and leads to the detection of an eavesdropper. Expressions for the secret key length are obtained for this attack. This does not require any changes in the design and control electronics of the phase-encoded QKD system, and only changes in processing the results of registration of quantum states are sufficient. At the same time, the secret key vulnerability and compromise in polarization-encoded QKD systems is an existing fact rather than a potential menace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. L. Lydersen, C. Wiechers, Ch. Wittmann, D. Elser, J. Skaar, and V. Makarov, Nat. Photon. 4, 686 (2010); arXiv:1008.4593.

  2. A. Vakhitov, V. Makarov, and D. R. Hjelme, J. Mod. Opt. 48, 2023 (2001).

    Article  ADS  Google Scholar 

  3. V. Makarov, A. Anisimov, and J. Skaar, Phys. Rev. A 74, 022313 (2006); arXiv: 0511032.

  4. V. Makarov and J. Skaar, Quant. Inform. Comp. 8, 0622 (2008); arXiv:0702262.

  5. V. Makarov, New J. Phys. 11, 065003 (2009); arXiv:0707.3987.

    Article  ADS  Google Scholar 

  6. L. Lydersen, C. Wiechers, Ch. Wittmann, D. Elser, J. Skaar, and V. Makarov, Nat. Photon. 4, 801 (2010); arXiv:1012. 0476.

  7. L. Lydersen, C. Wiechers, Ch. Wittmann, D. Elser, J. Skaar, and V. Makarov, Opt. Express 18, 27938 (2010); arXiv:1009.2663.

    Article  ADS  Google Scholar 

  8. L. Lydersen, J. Skaar, and V. Makarov, J. Mod. Opt. 58, 680 (2011); arXiv:1012.4366.

    Article  ADS  Google Scholar 

  9. I. Gerhardt, Qin Liu, A. Lamas-Linares, J. Skaar, Ch. Kurtsiefer, and V. Makarov, Nat. Commun. 2, 349 (2011); arXiv:1011.0105.

    Article  ADS  Google Scholar 

  10. S. Sauge, L. Lydersen, A. Anisimov, J. Skaar, and V. Makarov, Opt. Express 19, 23590 (2011); arXiv:0809.3408.

    Article  ADS  Google Scholar 

  11. L. Lydersen, V. Makarov, and J. Skaar, Appl. Phys. Lett. 98, 231104 (2011).

    Article  Google Scholar 

  12. L. Lydersen, M. K. Akhlaghi, A. Hamed Majedi, J. Skaar, and V. Makarov, New J. Phys. 13, 113042 (2011); arXiv:1106.2396.

    Article  ADS  Google Scholar 

  13. Qin Liu, A. Lamas-Linares, Ch. Kurtsiefer, J. Skaar, V. Makarov, and I. Gerhardt, Rev. Sci. Instrum. 85, 013108 (2014); arXiv:1307.5951.

    Article  ADS  Google Scholar 

  14. M. G. Tanner, V. Makarov, and R. H. Hadfield, Opt. Express 22, 6734 (2014); arXiv:1305.5989.

    Article  ADS  Google Scholar 

  15. A. Huang, S. Sajeed, P. Chaiwongkhot, M. Soucarros, M. Legré, and V. Makarov, arXiv:1601.00993.

  16. C. Ci Wen Lim, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, IEEE J. Sel. Top. Quantum. Electron. 21, 1 (2015); arXiv:1408.6398.

    Article  Google Scholar 

  17. Z. L. Yuan, J. F. Dynes, and A. J. Shields, Nat. Photon. 4, 800 (2010).

    Article  ADS  Google Scholar 

  18. Z. L. Yuan, J. F. Dynes, and A. J. Shields, Appl. Phys. Lett. 99, 196101 (2011).

    Article  ADS  Google Scholar 

  19. N. Jain, B. Stiller, I. Khan, D. Elser, Ch. Marquardt, and G. Leuchs, Contemp. Phys. 57, 3 (2016); arXiv:1512.07990.

  20. R. Renner, PhD Thesis (ETH Zürich, 2005); arXiv: quant-ph/0512258.

  21. A. V. Duplinskiy, E. O. Kiktenko, N. O. Pozhar, M. N. Anufriev, R. P. Ermakov, A. V. Brodsky, R. R. Unusov, V. L. Kurochkin, A. K. Fedorov, and Y. V. Kurochkin, arXiv:1712.09831.

Download references

ACKNOWLEDGMENTS

The author thanks his colleagues from the Academy of Cryptography for their constant support and discussions and also K.A. Balygin, A.N. Klimov, S.P. Kulik, and K.S. Kravtsov for numerous discussions.

This work was supported by the Russian Science Foundation (project no. 16-12-00015, continuation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Molotkov.

Additional information

Translated by M. Sapozhnikov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molotkov, S.N. Energy Conservation in Distributed Interference as a Guarantee for Detecting a Detector Blinding Attack in Quantum Cryptography. J. Exp. Theor. Phys. 128, 45–51 (2019). https://doi.org/10.1134/S1063776119010151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119010151

Navigation