Skip to main content
Log in

Magnification Effects in Scanning Tunneling Microscopy: the Role of Surface Radicals

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Scanning tunneling microscopy (STM) is a fundamental tool for determination of the surface atomic structure. However, the interpretation of high resolution microscopy images is not straightforward. In this paper we provide a physical insight on how STM images can suggest atomic locations which are distinctively different from the real ones. This effect should be taken into account when interpreting high-resolution STM images obtained on surfaces with directional bonds. It is shown that spurious images are formed in the presence of polarized surface radicals showing a pronounced angle with respect to the surface normal. This issue has been overlooked within the surface science community and often disregarded by experimentalists working with STM. Without loss of generality, we illustrate this effect by the magnification observed for pentamer-like structures on (110), (113), and (331) surfaces of silicon and germanium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. J. Myslivecek, F. Dvorák, A. Strózecka, B. Voigtländer, Phys. Rev. B 81, 245427 (2010).

    Article  ADS  Google Scholar 

  2. R. Zhachuk and J. Coutinho, Phys. Rev. B 84, 193405 (2011).

    Article  ADS  Google Scholar 

  3. J. Tersoff and D. R. Hamann, Phys. Rev. B 31, 805 (1985).

    Article  ADS  Google Scholar 

  4. W. A. Hofer, Progr. Surf. Sci. 71, 147 (2003).

    Article  ADS  Google Scholar 

  5. R. Zhachuk and S. Teys, Phys. Rev. B 95, 041412 (2017).

    Article  ADS  Google Scholar 

  6. J. Dąbrowski, H.-J. Müssig, and G. Wolff, Surf. Sci. 331–333, 1022 (1995).

  7. T. An, M. Yoshimura, I. Ono, and K. Ueda, Phys. Rev. B 61, 3006 (2000).

    Article  ADS  Google Scholar 

  8. A. A. Stekolnikov, J. Furthmüller, and F. Bechstedt, Phys. Rev. B 70, 045305 (2004).

    Article  ADS  Google Scholar 

  9. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  ADS  Google Scholar 

  10. G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).

    Article  ADS  Google Scholar 

  11. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  12. G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  13. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  14. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  15. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  16. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  ADS  MathSciNet  Google Scholar 

  17. I. Horcas, R. Fernández, J. M. Gómez-Rodríguez, J. Colchero, J. Gómez-Herrero, and A. M. Baro, Rev. Sci. Instr. 78, 013705 (2007).

    Article  ADS  Google Scholar 

  18. K. Sakamoto, M. Setvin, K. Mawatari, P. E. J. Eriksson, K. Miki, and R. I. G. Uhrberg, Phys. Rev. B 79, 045304 (2009).

    Article  ADS  Google Scholar 

  19. S. A. Teys, JETP Lett. 105, 477 (2017).

    Article  ADS  Google Scholar 

  20. R. Zhachuk and J. Coutinho, JETP Lett. 106, 346 (2017).

    Article  ADS  Google Scholar 

  21. U. D. Schwarz, H. Haefke, P. Reimann, and H. J. Güntherodt, J. Microsc. 173, 183 (1994).

    Article  Google Scholar 

  22. A. Kirakosian, R. Bennewitz, J. N. Crain, T. Fauster, J.-L. Lin, D. Y. Petrovykh, and F. J. Himpsel, Appl. Phys. Lett. 79, 1608 (2001).

    Article  ADS  Google Scholar 

  23. S. A. Teys, K. N. Romanyuk, R. A. Zhachuk, and B. Z. Olshanetsky, Surf. Sci. 600, 4878 (2006).

    Article  ADS  Google Scholar 

  24. R. Zhachuk and S. Pereira, Phys. Rev. B 79, 077401 (2009).

    Article  ADS  Google Scholar 

  25. R. Zhachuk, S. Teys, J. Coutinho, M. J. Rayson, and P. R. Briddon, Appl. Phys. Lett. 105, 171602 (2014).

    Article  ADS  Google Scholar 

  26. R. A. Zhachuk, J. Coutinho, M. J. Rayson, and P. R. Briddon, J. Exp. Theor. Phys. 120, 632 (2015).

    Article  ADS  Google Scholar 

  27. G. Prévot, F. Leroy, B. Croset, Y. Garreau, A. Coati, and P. Müller, Surf. Sci. 606, 209 (2012).

    Article  ADS  Google Scholar 

  28. C. P. León, H. Drees, S. M. Wippermann, M. Marz, and R. Hoffmann-Vogel, J. Phys. Chem. Lett. 7, 426 (2016).

    Article  Google Scholar 

  29. C. P. León, H. Drees, S. M. Wippermann, M. Marz, and R. Hoffmann-Vogel, Phys. Rev. B 95, 245412 (2017).

    Article  ADS  Google Scholar 

  30. J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón, and D. Sánchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002).

    ADS  Google Scholar 

  31. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  ADS  Google Scholar 

  32. J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).

    Article  ADS  Google Scholar 

  33. R. Zhachuk, S. Teys, and J. Coutinho, J. Chem. Phys. 138, 224702 (2013).

    Article  ADS  Google Scholar 

  34. R. Zhachuk, J. Coutinho, A. Dolbak, V. Cherepanov, and B. Voigtländer, Phys. Rev. B 96, 085401 (2017).

    Article  ADS  Google Scholar 

  35. S. García-Gil, A. García, N. Lorente, and P. Ordejón, Phys. Rev. B 79, 075441 (2009).

    Article  ADS  Google Scholar 

  36. R. Zhachuk, J. Coutinho, K. Palotás, J. Chem. Phys. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Zhachuk.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhachuk, R., Coutinho, J. Magnification Effects in Scanning Tunneling Microscopy: the Role of Surface Radicals. J. Exp. Theor. Phys. 128, 94–97 (2019). https://doi.org/10.1134/S1063776119010060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119010060

Navigation