Skip to main content
Log in

Zeeman Spectroscopy of Ultracold Thulium Atoms

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Dipolar ultracold gases are of great interest for quantum simulation experiments. The first step of such a simulation is deep cooling of atoms in a pre-specified internal state. The results of detailed studies of the formation of a spin-polarized cloud of thulium atoms in a dipole trap are presented. We have calibrated the magnetic field by means of radio-frequency Zeeman spectroscopy and measured the polarization of atoms in an optimized trap by the beam expansion method in a magnetic field gradient based on this calibration. We have obtained 1.1 × 106 atoms at a temperature of 27 μK with polarization 〈mF〉 = –3.95 ± 0.12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. I. M. Georgescu, S. Ashhab, and F. Nori, Rev. Mod. Phys. 86, 153 (2014).

    Article  ADS  Google Scholar 

  2. T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, and T. Pfau, Rep. Prog. Phys. 72, 71 (2009).

    Article  Google Scholar 

  3. M. Lu, S. H. Youn, and B. L. Lev, Phys. Rev. Lett. 104, 1 (2010).

    Google Scholar 

  4. M. Lu, N. Q. Burdick, S. H. Youn, and B. L. Lev, Phys. Rev. Lett. 107, 190401 (2011).

    Article  ADS  Google Scholar 

  5. C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010).

    Article  ADS  Google Scholar 

  6. S. Kotochigova, Rep. Prog. Phys. 77, 093901 (2014).

    Article  ADS  Google Scholar 

  7. K. Aikawa, A. Frisch, M. Mark, S. Baier, A. Rietzler, R. Grimm, and F. Ferlaino, Phys. Rev. Lett. 108, 1 (2012).

    Article  Google Scholar 

  8. A. Frisch, M. Mark, K. Aikawa, F. Ferlaino, J. L. Bohn, C. Makrides, A. Petrov, and S. Kotochigova, Nature (London, U.K.) 507, 475 (2013).

    Article  ADS  Google Scholar 

  9. A. Frisch, K. Aikawa, M. Mark, A. Rietzler, J. Schindler, E. Zupanič, R. Grimm, and F. Ferlaino, Phys. Rev. A 85, 051401 (2012).

    Article  ADS  Google Scholar 

  10. J. Miao, J. Hostetter, G. Stratis, and M. Saffman, Phys. Rev. A 89, 041401 (2014).

    Article  ADS  Google Scholar 

  11. W. Ketterle and N. J. van Druten, Adv. At. Mol. Opt. Phys. 37, 181 (1996).

    Article  ADS  Google Scholar 

  12. C. B. Connolly, Y. S. Au, S. C. Doret, W. Ketterle, and J. M. Doyle, Phys. Rev. A 81, 010702(R) (2010).

  13. K. Baumann, N. Q. Burdick, M. Lu, and B. L. Lev, Phys. Rev. A 89, 020701 (2014).

    Article  ADS  Google Scholar 

  14. R. Grimm, M. Weidemüller, and Y. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42, 95 (2000).

    Article  ADS  Google Scholar 

  15. S. Baier, Master Thesis (2012).

  16. D. D. Sukachev, E. S. Kalganova, A. V Sokolov, S. A. Fedorov, G. A. Vishnyakova, A. V Akimov, N. N. Kolachevsky, and V. N. Sorokin, Quantum Electron. 44, 515 (2014).

    Article  ADS  Google Scholar 

  17. I. S. Cojocaru, S. V. Pyatchenkov, S. A. Snigirev, I. A. Luchnikov, E. S. Kalganova, G. A. Vishnyakova, D. N. Kublikova, V. S. Bushmakin, E. T. Davletov, V. V. Tsyganok, O. V. Belyaeva, A. Khoroshilov, V. N. Sorokin, D. D. Sukachev, and A. V. Akimov, Phys. Rev. A 95, 012706 (2017).

    Article  ADS  Google Scholar 

  18. V. V. Tsyganok, V. A. Khlebnikov, E. S. Kalganova, E. T. Davletov, D. A. Pershin, I. S. Cojocaru, I. A. Luchnikov, V. S. Bushmakin, V. N. Sorokin, and A. V. Akimov, J. Phys. B: At. Mol. Opt. Phys. (2018, in press). https://doi.org/10.1088/1361

  19. S. Hensler, J. Werner, A. Griesmaier, P. O. Schmidt, A. Görlitz, T. Pfau, S. Giovanazzi, and K. Rzażewski, Appl. Phys. B 77, 765 (2003).

    Article  ADS  Google Scholar 

  20. D. Sukachev, S. Fedorov, I. Tolstikhina, D. Tregubov, E. Kalganova, G. Vishnyakova, A. Golovizin, N. Kolachevsky, K. Khabarova, and V. Sorokin, Phys. Rev. A 94, 022512 (2016).

    Article  ADS  Google Scholar 

  21. D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, Phys. Rev. A 77, 033401 (2008).

    Article  ADS  Google Scholar 

  22. J. H. Becher, S. Baier, K. Aikawa, M. Lepers, J.‑F. Wyart, O. Dulieu, and F. Ferlaino, Phys. Rev. A 97, 012509 (2018).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the Russian Science Foundation (project no. 18-12-00266). We express our deep gratitude to V. Yudin and R. Grim for a discussion and valuable advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Akimov.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsyganok, V.V., Pershin, D.A., Khlebnikov, V.A. et al. Zeeman Spectroscopy of Ultracold Thulium Atoms. J. Exp. Theor. Phys. 128, 199–206 (2019). https://doi.org/10.1134/S1063776119010059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119010059

Navigation