Skip to main content
Log in

Electron Polarization Solitons in a Helical Molecule

  • STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The evolution of the spin of an electron moving along the axis of a long helical molecule under the action of an external field is investigated. The field is produced by the dipoles of individual molecules forming a complex molecular structure (e.g., a DNA molecule). The electron polarization dynamics associated with the spin–orbit interaction is described using an integrable generalization of the Manakov equations. The phase cross-modulation, self-modulation, and analogs of the Rashba and Dresselhaus Hamiltonians are taken into account in the model Hamiltonian. The corresponding apparatus based on the solution of the Riemann–Hilbert problem is used for obtaining soliton solutions. The resultant one- and two-soliton solutions demonstrate a number of new properties. It is shown that a local perturbation produces a selective effect on the soliton polarization and can be used for controlling the position of the electron spin using impurity molecules or quantum dots with a constant dipole moment. It is found that the spin–orbit interaction leads to a strong spatial modulation of the soliton shape. The collision of solitons leads to modulation transfer between solitons and a change in the modulation amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. S. Davydov, Phys. Scr. 20, 387 (1979).

    Article  ADS  Google Scholar 

  2. M. Peyrard and A. R. Bishop, Phys. Rev. Lett. 62, 2755 (1989).

    Article  ADS  Google Scholar 

  3. S. Komineas, G. Kalosakas, and A. R. Bishop, Phys. Rev. E 65, 061905 (2002).

    Article  ADS  Google Scholar 

  4. P. Maniadis, G. Kalosakas, K. O. Rasmussen, and A. R. Bishop, Phys. Rev. E 72, 021912 (2005).

    Article  ADS  Google Scholar 

  5. E. Díaz, R. P. A. Lima, and F. Domínguez-Adame, Phys. Rev. B 78, 134303 (2008).

    Article  ADS  Google Scholar 

  6. B. Göhler, V. Hamelbeck, T. Z. Markus, M. Kettner, G. F. Hanne, Z. Vager, R. Naaman, and H. Zacharias, Science (Washington, DC, U. S.) 331, 894 (2011).

    Article  Google Scholar 

  7. Z. Xie, T. Z. Markus, S. R. Cohen, Z. Vager, R. Gutiérrez, and R. Naaman, Nano Lett. 11, 4652 (2011).

    Article  ADS  Google Scholar 

  8. D. Mishra, T. Z. Markus, M. Naaman, R. Kettner, B. Gohler, H. Zacharias, N. Friedman, M. Sheves, and C. Fontanesi, Proc. Natl. Acad. Sci. U.S.A. 110, 14872 (2013).

    Article  ADS  Google Scholar 

  9. O. B. Dor, S. Yochelis, S. P. Mathew, R. Naaman, and Y. Paltiel, Nat. Commun. 4, 2256 (2013).

    Article  ADS  Google Scholar 

  10. M. Kettner, B. Göhler, H. Zacharias, D. Mishra, V. Kiran, R. Naaman, C. Fontanesi, D. H. Waldeck, S. Sék, J. Pawlowski, et al., J. Phys. Chem. C 119, 14542 (2015).

    Article  Google Scholar 

  11. P. C. Mondal, C. Fontanesi, D. H. Waldeck, and R. Naaman, ACS Nano 9, 3377 (2015).

    Article  Google Scholar 

  12. H. Einati, D. Mishra, N. Friedman, M. Sheves, and R. Naaman, Nano Lett. 15, 1052 (2015).

    Article  ADS  Google Scholar 

  13. V. Kiran, S. P. Mathew, S. R. Cohen, I. Hernandez Delgado, J. Lacour, and R. Naaman, Adv. Mater. 28, 1957 (2016).

    Article  Google Scholar 

  14. A. C. Aragonés, E. Medina, M. Ferrer-Huerta, N. Gimeno, M. Teixidó, J. L. Palma, N. Tao, J. M. Ugalde, E. Giralt, I. Díez-Pérez, et al., Small 13, 1602519 (2017).

    Article  Google Scholar 

  15. G. Dresselhaus, Phys. Rev. 100, 580 (1955).

    Article  ADS  Google Scholar 

  16. Yu. A. Bychkov and E. I. Rashba, JETP Lett. 39, 78 (1984).

    ADS  Google Scholar 

  17. D. L. Campbell, G. Juzeliunas, and I. B. Spielman, Phys. Rev. A 84, 025602 (2011).

    Article  ADS  Google Scholar 

  18. S. Yeganeh, M. A. Ratner, E. Medina, and V. Mujica, J. Chem. Phys. 131, 014707 (2009).

    Article  ADS  Google Scholar 

  19. E. Medina, F. López, M. A. Ratner, and V. Mujica, Europhys. Lett. 99, 17006 (2012).

    Article  ADS  Google Scholar 

  20. R. Gutiérrez, E. Díaz, R. Naaman, and G. Cuniberti, Phys. Rev. B 85, 081404 (2012).

    Article  ADS  Google Scholar 

  21. A.-M. Guo and Q.-F. Sun, Phys. Rev. Lett. 108, 218102 (2012).

    Article  ADS  Google Scholar 

  22. A.-M. Guo, E. Díaz, C. Gaul, R. Gutierrez, F. Domínguez-Adame, G. Cuniberti, and Q.-F. Sun, Phys. Rev. B 89, 205434 (2014).

    Article  ADS  Google Scholar 

  23. D. Rai and M. Galperin, J. Phys. Chem. C 117, 13730 (2013).

    Article  Google Scholar 

  24. R. Gutiérrez, E. Díaz, C. Gaul, T. Brumme, F. Domínguez-Adame, and G. Cuniberti, J. Phys. Chem. C 117, 22276 (2013).

    Article  Google Scholar 

  25. E. Medina, L. A. Gonzalez-Arraga, D. Finkelstein-Shapiro, B. Berche, and V. Mujica, J. Chem. Phys. 142, 194308 (2015).

    Article  ADS  Google Scholar 

  26. S. Behnia, S. Fathizadeh, and A. Akhshani, J. Phys. Chem. C 120, 2973 (2016).

    Article  Google Scholar 

  27. R. A. Caetano, Sci. Rep. 6, 23452 (2016).

    Article  ADS  Google Scholar 

  28. V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).

    ADS  Google Scholar 

  29. S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons: The Inverse Scattering Method (Springer, Berlin, Heidelberg, 1984).

    MATH  Google Scholar 

  30. S. V. Manakov, Sov. Phys. JETP 38, 248 (1974).

    ADS  Google Scholar 

  31. R. Radhakrishnan, M. Lakshmanan, and J. Hietarinta, Phys. Rev. E 56, 2213 (1997).

    Article  ADS  Google Scholar 

  32. T. Tsuchida, Prog. Theor. Phys. 111, 151 (2004).

    Article  ADS  Google Scholar 

  33. A. V. Mikhailov, Phys. D (Amsterdam, Neth.) 3, 73 (1981).

  34. V. E. Zakharov and E. I. Schulman, Phys. D (Amsterdam, Neth.) 4, 270 (1982).

  35. J. Ieda, T. Miyakawa, and M. Wadati, J. Phys. Soc. Jpn. 73, 2996 (2004).

    Article  ADS  Google Scholar 

  36. Deng-Shan Wang, Da-Jun Zhang, and Jianke Yang, J. Math. Phys. 51, 023510 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  37. A. A. Zabolotskii, Phys. Rev. E 75, 036612 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  38. A. A. Zabolotskii, Phys. Rev. E 77, 036603 (2008).

    Article  ADS  Google Scholar 

  39. A. A. Zabolotskii, Phys. Rev. A 80, 063616 (2009).

    Article  ADS  Google Scholar 

  40. E. Díaz, R. Gutiérrez, C. Gaul, G. Cuniberti, and F. Domínguez-Adame, AIMS Mater. Sci. 4, 1052 (2017).

    Google Scholar 

  41. D. Sengupta, R. N. Behera, J. C. Smith, and G. M. Ullmann, Structure 13, 849 (2005).

    Article  Google Scholar 

  42. R. Gutiérrez, E. Díaz, R. Naaman, and G. Cuniberti, Phys. Rev. B 85, 081404 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the Russian Foundation for Basic Research (project no. 18-02-00379).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zabolotskii.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabolotskii, A.A. Electron Polarization Solitons in a Helical Molecule. J. Exp. Theor. Phys. 128, 158–165 (2019). https://doi.org/10.1134/S1063776118120117

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118120117

Navigation