Skip to main content
Log in

Dynamics and Stability of Subsonic Crowdion Clusters in 2D Morse Crystal

  • SOLIDS AND LIQUIDS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Recently, the concept of supersonic N-crowdions was offered. In molecular dynamics simulations, they can be excited by initial kick of N neighboring atoms located in one close-packed atomic row along this row. In the present study, in 2D Morse crystal, we apply initial kick to M neighboring atoms located in neighboring close-packed atomic rows along these rows. This way, we initiate crowdion clusters called subsonic M-crowdions. It is well known that static 1-crowdion in 2D Morse lattice is unstable; as a result, the interstitial atom leaves the close-packed atomic row and becomes immobile. However, we show that 1-crowdion moving with sufficiently large subsonic velocity remains in the close-packed atomic row. Crowdion clusters with M equal to or greater than 2 appear to be stable even at rest, with growing M transforming into prismatic dislocation loops. It is important to note that stable subsonic M-crowdions (M > 1) remain mobile and they can carry interstitial atoms over long distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. N. H. March and D. I. Pushkarov, J. Phys. Chem. Solids 57, 139 (1996).

    Article  ADS  Google Scholar 

  2. V. D. Natsik and Y. I. Nazarenko, Eur. Phys. J. B 29, 285 (2002).

    Article  ADS  Google Scholar 

  3. Z. K. Saralidze, M. V. Galustashvili, and D. G. Driaev, Phys. Solid State 48, 1298 (2006).

    Article  ADS  Google Scholar 

  4. M. A. Volosyuk, A. V. Volosyuk, and N. Y. Rokhmanov, Funct. Mater. 22, 51 (2015).

    Article  Google Scholar 

  5. V. G. Kononenko, V. V. Bogdanov, A. N. Turenko, M. A. Volosyuk, and A. V. Volosyuk, Probl. At. Sci. Tech. 104, 15 (2016).

    Google Scholar 

  6. Y. N. Osetsky, D. J. Bacon, and A. Serra, Philos. Mag. Lett. 79, 273 (1999).

    Article  Google Scholar 

  7. S. Han, L. A. Zepeda-Ruiz, G. J. Ackland, R. Car, and D. J. Srolovitz, Phys. Rev. B 66, 220101 (2002).

    Article  ADS  Google Scholar 

  8. H. Abe, N. Sekimura, and Y. Yang, J. Nucl. Mater. 323, 220 (2003).

    Article  ADS  Google Scholar 

  9. S. L. Dudarev, Philos. Mag. 83, 3577 (2003).

    Article  ADS  Google Scholar 

  10. Y. N. Osetsky, D. J. Bacon, A. Serra, et al., Philos. Mag. 83, 61 (2003).

    Article  ADS  Google Scholar 

  11. D. A. Terentyev, L. Malerba, and M. Hou, Phys. Rev. B 75, 104108 (2007).

    Article  ADS  Google Scholar 

  12. W. H. Zhou, C. G. Zhang, Y. G. Li, et al., Sci. Rep. 4, 5096 (2014).

    Article  ADS  Google Scholar 

  13. W. H. Zhou, C. G. Zhang, Y. G. Li, et al., J. Nucl. Mater. 453, 202 (2014).

    Article  ADS  Google Scholar 

  14. S. Bukkuru, U. Bhardwaj, K. Srinivasa Rao, et al., Mater. Res. Express 5, 035513 (2018).

    Article  ADS  Google Scholar 

  15. L. Zhang, G. Tang, and X. Ma, Phys. Lett. A 374, 2137 (2010).

    Article  ADS  Google Scholar 

  16. H. R. Paneth, Phys. Rev. 80, 708 (1950).

    Article  ADS  Google Scholar 

  17. W. Xiao, P. A. Greaney, and D. C. Chrzan, Phys. Rev. Lett. 90, 4 (2003).

    Article  Google Scholar 

  18. P. M. Derlet, D. Nguyen-Manh, and S. L. Dudarev, Phys. Rev. B 76, 054107 (2007).

    Article  ADS  Google Scholar 

  19. J. F. R. Archilla, Y. A. Kosevich, N. Jimenez, et al., Phys. Rev. E 91, 022912 (2015).

    Article  ADS  Google Scholar 

  20. Yu. A. Kosevich, R. Khomeriki, and S. Ruffo, Europhys. Lett. 66, 21 (2004).

    Article  ADS  Google Scholar 

  21. Yu. A. Kosevich, J. Phys.: Conf. Ser. 833, 012021 (2017).

    Google Scholar 

  22. A. P. Chetverikov, I. A. Shepelev, E. A. Korznikova, et al., Comput. Condens. Matter 13, 59 (2017).

    Article  Google Scholar 

  23. S. V. Dmitriev, E. A. Korznikova, J. A. Baimova, and M. G. Velarde, Phys. Usp. 59, 446 (2016).

    Article  ADS  Google Scholar 

  24. L. Z. Khadeeva and S. V. Dmitriev, Phys. Rev. B 84, 144304 (2011).

    Article  ADS  Google Scholar 

  25. E. A. Korznikova, S. Yu. Fomin, E. G. Soboleva, and S. V. Dmitriev, JETP Lett. 103, 277 (2016).

    Article  ADS  Google Scholar 

  26. E. Barani, E. A. Korznikova, A. P. Chetverikov, K. Zhou, and S. V. Dmitriev, Phys. Lett. A 381, 3553 (2017).

    Article  ADS  Google Scholar 

  27. R. T. Murzaev, D. V. Bachurin, E. A. Korznikova, et al., Phys. Lett. A 381, 1003 (2017).

    Article  ADS  Google Scholar 

  28. I. Evazzade, I. P. Lobzenko, E. A. Korznikova, et al., Phys. Rev. B 95, 035423 (2017).

    Article  ADS  Google Scholar 

  29. E. Barani, I. P. Lobzenko, E. A. Korznikova, et al., Eur. Phys. J. B 90, 38 (2017).

    Article  ADS  Google Scholar 

  30. R. T. Murzaev, R. I. Babicheva, K. Zhou, et al., Eur. Phys. J. B 89, 168 (2016).

    Article  ADS  Google Scholar 

  31. F. M. Russell and J. C. Eilbeck, Europhys. Lett. 78, 10004 (2007).

    Article  ADS  Google Scholar 

  32. J. Bajars, J. C. Eilbeck, and B. Leimkuhler, Phys. D (Amsterdam, Neth.) 301–302, 8 (2015).

  33. J. Bajars, J. C. Eilbeck, and B. Leimkuhler, Springer Ser. Mater. Sci. 221, 35 (2015).

    Google Scholar 

  34. S. V. Dmitriev, N. Yoshikawa, M. Kohyama, et al., Acta Mater. 52, 1959 (2004).

    Article  Google Scholar 

  35. J. L. Marin, F. M. Russell, and J. C. Eilbeck, Phys. Lett. A 281, 21 (2001).

    Article  ADS  Google Scholar 

  36. E. A. Korznikova, D. V. Bachurin, S. Y. Fomin, et al., Eur. Phys. J. B 90, 23 (2017).

    Article  ADS  Google Scholar 

  37. A. P. Chetverikov, W. Ebeling, and M. G. Velarde, Eur. Phys. J. B 89, 196 (2016).

    Article  ADS  Google Scholar 

  38. A. Chetverikov, W. Ebeling, and M. G. Velarde, Lett. Mater. 6, 82 (2016).

    Article  Google Scholar 

  39. F. M. Russell, Nature (London, U.K.) 217, 51 (1967).

    Article  ADS  Google Scholar 

  40. F. M. Russell, Phys. Lett. A 130, 489 (1988).

    Article  ADS  Google Scholar 

  41. F. Russell, Nucl. Tracks Radiat. Meas. 15, 41 (1988).

    Article  Google Scholar 

  42. F. M. Russell, Springer Ser. Mater. Sci. 221, 3 (2015).

    Google Scholar 

  43. S. V. Dmitriev, E. A. Korznikova, and A. P. Chetverikov, J. Exp. Theor. Phys. 153, 347 (2018).

    Article  ADS  Google Scholar 

  44. S. V. Dmitriev, N. N. Medvedev, A. P. Chetverikov, et al., Phys. Status Solidi RRL 11, 1700298 (2017).

    Article  Google Scholar 

  45. J. P. Hirth and J. Lothe, Theory of Dislocations (McGraw-Hill, New York, 1967).

    MATH  Google Scholar 

Download references

ACKNOWLEDGMENTS

For Korznikova E.A., Shepelev I.A., and Chetverikov A.P. this work was supported by the Russian Science Foundation, grant no. 16-12-10175 (performing calculations, discussion of the numerical results and writing the paper). Dmitriev S.V. thanks the Russian Foundation for Basic Research, grant no. 17-02-00984-a (statement of the problem and discussion of the numerical results). This work was partly supported by the State Assignment of IMSP RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Korznikova.

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korznikova, E.A., Shepelev, I.A., Chetverikov, A.P. et al. Dynamics and Stability of Subsonic Crowdion Clusters in 2D Morse Crystal. J. Exp. Theor. Phys. 127, 1009–1015 (2018). https://doi.org/10.1134/S1063776118120063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118120063

Navigation