Skip to main content
Log in

Wave Breaking in Dispersive Fluid Dynamics of the Bose–Einstein Condensate

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The problem of wave breaking during its propagation in the Bose–Einstein condensate to a stationary medium is considered for the case when the initial profile at the breaking instant can be approximated by a power function of the form (–x)1/n. The evolution of the wave is described by the Gross–Pitaevskii equation so that a dispersive shock wave is formed as a result of breaking; this wave can be represented using the Gurevich–Pitaevskii approach as a modulated periodic solution to the Gross–Pitaevskii equation, and the evolution of the modulation parameters is described by the Whitham equations obtained by averaging the conservation laws over fast oscillations in the wave. The solution to the Whitham modulation equations is obtained in closed form for n = 2, 3, and the velocities of the dispersion shock wave edges for asymptotically long evolution times are determined for arbitrary integers n > 1. The problem considered here can be applied for describing the generation of dispersion shock waves observed in experiments with the Bose–Einstein condensate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Fizmatlit, Moscow, 2006; Pergamon, New York, 1987).

  2. R. Courant and K. Friedrichs, Supersonic Flow and Shock Waves (Interscience, New York, 1948).

    MATH  Google Scholar 

  3. T. B. Benjamin and M. J. Lighthill, Proc. R. Soc. London, Ser. A 224, 448 (1954).

    Article  ADS  Google Scholar 

  4. R. Z. Sagdeev, in Problems of Plasma Theory, Ed. by M. A. Leontovich (Moscow, 1964), No. 4, p. 20 [in Russian].

  5. A. V. Gurevich and L. P. Pitaevskii, Sov. Phys. JETP 38, 291 (1973).

    ADS  Google Scholar 

  6. G. B. Whitham, Proc. R. Soc. London, Ser. A 283, 238 (1965).

    Article  ADS  Google Scholar 

  7. G. V. Potemin, Usp. Mat. Nauk 43, 39 (1988).

    MathSciNet  Google Scholar 

  8. A. M. Kamchatnov, Nonlinear Periodic Waves and Their Modulations. An Introductory Course (World Scientific, Singapore, 2000).

    Book  MATH  Google Scholar 

  9. G. A. El and M. A. Hoefer, Phys. D (Amsterdam, Neth.) 333, 11 (2016).

  10. E. P. Gross, Nuovo Cimento 20, 454 (1961).

    Article  Google Scholar 

  11. L. P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961).

    MathSciNet  Google Scholar 

  12. T. Tsuzuki, J. Low Temp. Phys. 4, 441 (1971).

    Article  ADS  Google Scholar 

  13. A. V. Gurevich and A. L. Krylov, Sov. Phys. JETP 65, 944 (1987).

    Google Scholar 

  14. V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 37, 823 (1973).

    ADS  Google Scholar 

  15. M. G. Forest and J. E. Lee, in Oscillation Theory, Computation, and Methods of Compensated Compactness, Ed. by C. Dafermos et al., Vol. 2 of IMA Volumes on Mathematics and Its Applications (Springer, New York, 1986).

  16. M. V. Pavlov, Teor. Mat. Fiz. 71, 351 (1987).

    Article  Google Scholar 

  17. G. A. El, V. V. Geogjaev, A. V. Gurevich, and A. L. Krylov, Phys. D (Amsterdam, Neth.) 87, 186 (1995).

  18. A. M. Kamchatnov, R. A. Kraenkel, B. A. Umarov, Phys. Rev. E 66, 036609 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  19. E. A. Cornell, Talk at NATO Advanced Workshop on Nonlinear Waves: Classical and Quantum Aspects, Lisbon, 2003.

  20. M. A. Hoefer, M. J. Ablowitz, I. Coddington, E. A. Cornell, P. Engels, and V. Schweikhard, Phys. Rev. A 74, 023623 (2006).

    Article  ADS  Google Scholar 

  21. A. M. Kamchatnov, A. Gammal, and R. A. Kraenkel, Phys. Rev. A 69, 063605 (2004).

    Article  ADS  Google Scholar 

  22. M. A. Hoefer, M. J. Ablowitz, and P. Engels, Phys. Rev. Lett. 100, 084504 (2008).

    Article  ADS  Google Scholar 

  23. A. M. Kamchatnov and S. V. Korneev, J. Exp. Theor. Phys. 110, 170 (2010).

    Article  ADS  Google Scholar 

  24. S. P. Tsarev, Izv. Akad. Nauk SSSR, Ser. Mat. 54, 1048 (1990).

    Google Scholar 

  25. A. V. Gurevich, A. L. Krylov, and G. A. El’, Sov. Phys. JETP 74, 957 (1992).

    Google Scholar 

  26. O. Wright, Commun. Pure Appl. Math. 46, 421 (1993).

    Article  Google Scholar 

  27. F. R. Tian, Commun. Pure Appl. Math. 46, 1093 (1993).

    Article  Google Scholar 

  28. A. V. Gurevich, A. L. Krylov, and N. G. Mazur, Sov. Phys. JETP 68, 966 (1989).

    Google Scholar 

  29. E. T. Whittaker and D. N. Watson, A Course of Modern Analysis (Cambridge Univ., Cambridge, 1927; Fizmatgiz, Moscow, 1963), Vol. 2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Kamchatnov.

Additional information

Contribution for the JETP special issue in honor of L.P. Pitaevskii’s 85th birthday

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamchatnov, A.M. Wave Breaking in Dispersive Fluid Dynamics of the Bose–Einstein Condensate. J. Exp. Theor. Phys. 127, 903–911 (2018). https://doi.org/10.1134/S1063776118110043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118110043

Navigation