Skip to main content
Log in

Optical Visibility and Core Structure of Vortex Filaments in a Bosonic Superfluid

  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We use optical images of a superfluid consisting of a weakly interacting Bose–Einstein condensate of sodium atoms to investigate the structure of quantized three-dimensional vortex filaments. We find that the measured optical contrast and the width of the vortex core quantitatively agree with the predictions of the Gross–Pitaevskii equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. Notice that an equation of the same form was derived in [4], within a phenomenological theory for superfluids close to the normal-superfluid phase transition; the meaning of the coefficients is however entirely different.

REFERENCES

  1. L. Pitaevskii, Sov. Phys. JETP 13, 451 (1961).

    MathSciNet  Google Scholar 

  2. E. P. Gross, Nuovo Cim. 20, 454 (1961).

    Article  ADS  Google Scholar 

  3. N. Bogolyubov, Izv. Akad. Nauk SSSR, Ser. Fiz. 11, 77 (1947).

    Google Scholar 

  4. V. L. Ginzburg and L. P. Pitaevskii, Sov. Phys. JETP 7, 858 (1958).

    Google Scholar 

  5. R. J. Donnelly, Quantized Vortices in Helium II (Cambridge Univ. Press, Cambridge, 1991).

    Google Scholar 

  6. F. Dalfovo, Phys. Rev. B 46, 5482 (1992).

    Article  ADS  Google Scholar 

  7. G. Ortiz and D. M. Ceperley, Phys. Rev. Lett. 75, 4642 (1995).

    Article  ADS  Google Scholar 

  8. S. A. Vitiello, L. Reatto, G. V. Chester, and M. H. Kalos, Phys. Rev. B 54, 1205 (1996).

    Article  ADS  Google Scholar 

  9. S. Giorgini, J. Boronat, and J. Casulleras, Phys. Rev. Lett. 77, 2754 (1996).

    Article  ADS  Google Scholar 

  10. D. E. Galli, L. Reatto, and M. Rossi, Phys. Rev. B 89, 224516 (2014).

    Article  ADS  Google Scholar 

  11. E. J. Yarmchuk, M. J. V. Gordon, and R. E. Packard, Phys. Rev. Lett. 43, 214 (1979).

    Article  ADS  Google Scholar 

  12. E. J. Yarmchuk and R. E. Packard, J. Low Temp. Phys. 46, 479 (1982).

    Article  ADS  Google Scholar 

  13. W. Guo, D. Jin, G. M. Seidel, and H. J. Maris, Phys. Rev. B 79, 054515 (2009).

    Article  ADS  Google Scholar 

  14. D. D. Jin and H. Maris, J. Low Temp. Phys. 162, 329 (2011).

    Article  ADS  Google Scholar 

  15. G. P. Bewley, D. P. Lathrop, and K. R. Sreenivasan, Nature (London, U.K.) 441, 588 (2006).

    Article  ADS  Google Scholar 

  16. G. Bewley, M. Paoletti, K. Sreenivasan, and D. Lathrop, Proc. Natl. Acad. Sci. (U.S.A.) 105, 13707 (2008).

    Article  ADS  Google Scholar 

  17. M. Paoletti, M. E. Fisher, and D. Lathrop, Phys. D (Amsterdam, Neth.) 239, 1367 (2010).

  18. M. S. Paoletti and D. P. Lathrop, Ann. Rev. Condens. Matter Phys. 2, 213 (2011).

    Article  ADS  Google Scholar 

  19. E. Fonda, D. P. Meichle, N. T. Ouellette, S. Hormoz, and D. P. Lathrop, Proc. Natl. Acad. Sci. (U.S.A.) 111, 4707 (2014).

    Article  ADS  Google Scholar 

  20. D. E. Zmeev, F. Pakpour, P. M. Walmsley, A. I. Golov, W. Guo, D. N. McKinsey, G. G. Ihas, P. V. E. McClintock, S. N. Fisher, and W. F. Vinen, Phys. Rev. Lett. 110, 175303 (2013).

    Article  ADS  Google Scholar 

  21. C. F. Barenghi and Y. A. Sergeev, Phys. Rev. B 80, 024514 (2009).

    Article  ADS  Google Scholar 

  22. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod. Phys. 71, 463 (1999).

    Article  ADS  Google Scholar 

  23. L. Pitaevskii and S. Stringari, Bose–Einstein Condensation and Superfluidity (Oxford Univ. Press, Oxford, 2016).

    Book  MATH  Google Scholar 

  24. M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 83, 2498 (1999).

    Article  ADS  Google Scholar 

  25. K. W. Madison, F. Chevy, W. Wohlleben, and J. Dalibard, Phys. Rev. Lett. 84, 806 (2000).

    Article  ADS  Google Scholar 

  26. B. P. Anderson, P. C. Haljan, C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 85, 2857 (2000).

    Article  ADS  Google Scholar 

  27. B. P. Anderson, P. C. Haljan, C. A. Regal, D. L. Feder, L. A. Collins, C. W. Clark, and E. A. Cornell, Phys. Rev. Lett. 86, 2926 (2001).

    Article  ADS  Google Scholar 

  28. P. C. Haljan, B. P. Anderson, I. Coddington, and E. A. Cornell, Phys. Rev. Lett. 86, 2922 (2001).

    Article  ADS  Google Scholar 

  29. J. Abo-Shaeer, C. Raman, J. Vogels, and W. Ketterle, Science (Washington, DC, U. S.) 292, 476 (2001).

    Article  ADS  Google Scholar 

  30. E. Hodby, G. Hechenblaikner, S. A. Hopkins, O. M. Marago, and C. J. Foot, Phys. Rev. Lett. 88, 010405 (2001).

    Article  Google Scholar 

  31. A. Fetter, Rev. Mod. Phys. 81, 647 (2009).

    Article  ADS  Google Scholar 

  32. E. Lundh, C. J. Pethick, and H. Smith, Phys. Rev. A 58, 4816 (1998).

    Article  ADS  Google Scholar 

  33. F. Dalfovo and M. Modugno, Phys. Rev. A 61, 023605 (2000).

    Article  ADS  Google Scholar 

  34. O. Hosten, P. Vignolo, A. Minguzzi, B. Tanatar, and M. P. Tosi, J. Phys. B 36, 2455 (2003).

    Article  ADS  Google Scholar 

  35. R. P. Teles, F. E. A. dos Santos, M. A. Caracanhas, and V. S. Bagnato, Phys. Rev. A 87, 033622 (2013).

    Article  ADS  Google Scholar 

  36. S. W. Seo, J.-Y. Choi, and Y.-I. Shin, J. Korean Phys. Soc. 64, 53 (2013).

    Article  Google Scholar 

  37. A. Aftalion and T. Riviere, Phys. Rev. A 64, 043611 (2001).

    Article  ADS  Google Scholar 

  38. J. J. Garcia-Ripoll and V. M. Perez-Garcia, Phys. Rev. A 64, 053611 (2001).

    Article  ADS  Google Scholar 

  39. A. Aftalion and I. Danaila, Phys. Rev. A 68, 023603 (2003).

    Article  ADS  Google Scholar 

  40. M. Modugno, L. Pricoupenko, and Y. Castin, Eur. Phys. J. D 22, 235 (2003).

    Article  ADS  Google Scholar 

  41. C. Raman, J. R. Abo-Shaeer, J. M. Vogels, K. Xu, and W. Ketterle, Phys. Rev. Lett. 87, 210402 (2001).

    Article  ADS  Google Scholar 

  42. P. Rosenbusch, V. Bretin, and J. Dalibard, Phys. Rev. Lett. 89, 200403 (2002).

    Article  ADS  Google Scholar 

  43. V. Bretin, P. Rosenbusch, F. Chevy, G. V. Shlyapnikov, and J. Dalibard, Phys. Rev. Lett. 90, 100403 (2003).

    Article  ADS  Google Scholar 

  44. S. Donadello, S. Serafini, M. Tylutki, L. P. Pitaevskii, F. Dalfovo, G. Lamporesi, and G. Ferrari, Phys. Rev. Lett. 113, 065302 (2014).

    Article  ADS  Google Scholar 

  45. G. Lamporesi, S. Donadello, S. Serafini, F. Dalfovo, and G. Ferrari, Nat. Phys. 9, 656 (2013).

    Article  Google Scholar 

  46. S. Donadello, S. Serafini, T. Bienaime, F. Dalfovo, G. Lamporesi, and G. Ferrari, Phys. Rev. A 94, 023628 (2016).

    Article  ADS  Google Scholar 

  47. J. Brand and W. P. Reinhardt, Phys. Rev. A 65, 043612 (2002).

    Article  ADS  Google Scholar 

  48. S. Komineas and N. Papanicolaou, Phys. Rev. A 68, 043617 (2003).

    Article  ADS  Google Scholar 

  49. M. J. H. Ku, W. Ji, B. Mukherjee, E. Guardado-Sanchez, L. W. Cheuk, T. Yefsah, and M. W. Zwierlein, Phys. Rev. Lett. 113, 065301 (2014).

    Article  ADS  Google Scholar 

  50. M. Tylutki, S. Donadello, S. Serafini, L. P. Pitaevskii, F. Dalfovo, G. Lamporesi, and G. Ferrari, Eur. Phys. J. Spec. Top. 224, 577 (2015).

    Article  Google Scholar 

  51. F. Dalfovo, L. Pitaevskii, and S. Stringari, Phys. Rev. A 54, 4213 (1996).

    Article  ADS  Google Scholar 

  52. Y. Castin and R. Dum, Phys. Rev. Lett. 77, 5315 (1996).

    Article  ADS  Google Scholar 

  53. Y. Kagan, E. L. Surkov, and G. V. Shlyapnikov, Phys. Rev. A 54, R1753 (1996).

    Article  ADS  Google Scholar 

  54. F. Dalfovo, C. Minniti, S. Stringari, and L. Pitaevskii, Phys. Lett. A 227, 259 (1997).

    Article  ADS  Google Scholar 

  55. L. P. Pitaevskii and A. Rosch, Phys. Rev. A 55, R853 (1997).

    Article  ADS  Google Scholar 

  56. R. N. Bisset, S. Serafini, E. Iseni, M. Barbiero, T. Bienaime, G. Lamporesi, G. Ferrari, and F. Dalfovo, Phys. Rev. A 96, 053605 (2017).

    Article  ADS  Google Scholar 

  57. I. Coddington, P. C. Haljan, P. Engels, V. Schweikhard, S. Tung, and E. A. Cornell, Phys. Rev. A 70, 063607 (2004).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We dedicate this paper to L.P. Pitaevskii in celebration of his 85th birthday. No words can express our gratitude for the times spent working alongside him and, of course, for his pioneering contributions to physics itself. This work is supported by Provincia Autonoma di Trento and by QuantERA ERA-NET cofund project NAQUAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Dalfovo.

Additional information

Contribution for the JETP special issue in honor of L.P. Pitaevskii’s 85th birthday

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalfovo, F., Bisset, R.N., Mordini, C. et al. Optical Visibility and Core Structure of Vortex Filaments in a Bosonic Superfluid. J. Exp. Theor. Phys. 127, 804–811 (2018). https://doi.org/10.1134/S1063776118110018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118110018

Navigation