Skip to main content
Log in

Neutron Microbeam from a Planar Waveguide

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The angular divergence of a narrow divergent neutron microbeam escaping from the end of a three-layer film waveguide has been measured as a function of the waveguiding layer width and the neutron wavelength. This microbeam originates from a conventional neutron beam that is incident on the surface of the film, propagates along the middle layer, and escapes from the end face in the form of a narrow divergent microbeam. The experimental results are compared with calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. F. Ott, Springer Ser. Opt. Sci. 137, 113 (2008).

    Article  Google Scholar 

  2. S. V. Kozhevnikov, F. Ott, J. Torrejón, M. Vázquez, and A. Thiaville, Phys. Solid State 56, 57 (2014).

    Article  ADS  Google Scholar 

  3. M. Vázquez and A.-L. Adenot-Engelvin, J. Magn. Magn. Mater. 321, 2066 (2009).

    Article  ADS  Google Scholar 

  4. J. Torrejón, A. Thiaville, A. L. Adenot-Engelvin, M. Vázquez, and O. Acher, J. Magn. Magn. Mater. 323, 283 (2011).

    Article  ADS  Google Scholar 

  5. J. Yamasaki, J. Magn. Soc. Jpn. 16, 14 (1992).

    Google Scholar 

  6. P. Thibaudeau, F. Ott, A. Thiaville, V. Dubuget, and F. Duverger, Europhys. Lett. 93, 3700 (2011).

    Article  Google Scholar 

  7. T. M. Rekveldt and W. H. Kraan, J. Magn. Magn. Mater. 329, 105 (2013).

    Article  ADS  Google Scholar 

  8. S. V. Kozhevnikov, A. Rühm, and J. Major, Crystallogr. Rep. 56, 1207 (2011).

    Article  ADS  Google Scholar 

  9. R. E. de Wames and S. K. Sinha, Phys. Rev. B 7, 197 (1973).

    Article  Google Scholar 

  10. S. P. Pogossian, A. Menelle, H. Le Gall, J. Ben-Youssef, and J. M. Desvignes, J. Appl. Phys. 83, 1159 (1998).

    Article  ADS  Google Scholar 

  11. F. Pfeiffer, V. Leiner, P. Hoghoj, and I. Anderson, Phys. Rev. Lett. 88, 055507 (2002).

    Article  ADS  Google Scholar 

  12. F. Pfeiffer, P. Hoghoj, I. S. Anderson, and V. Leiner, Proc. SPIE 4509, 79 (2001).

    Article  ADS  Google Scholar 

  13. S. V. Kozhevnikov, A. Rühm, F. Ott, N. K. Pleshanov, and J. Major, Phys. B (Amsterdam, Neth.) 406, 2463 (2011).

  14. S. V. Kozhevnikov, V. K. Ignatovich, Yu. V. Nikitenko, F. Ott, and A. V. Petrenko, JETP Lett. 102, 1 (2015).

    Article  ADS  Google Scholar 

  15. V. L. Aksenov, K. N. Jernenkov, S. V. Kozhevnikov, H. Lauter, V. Lauter-Pasyuk, Yu. V. Nikitenko, and A. V. Petrenko, JINR Commun. D13-2004-47 (JINR, Dubna, 2004).

    Google Scholar 

  16. F. Radu and V. K. Ignatovich, Phys. B (Amsterdam, Neth.) 292, 160 (2000).

  17. S. V. Kozhevnikov, T. Keller, Yu. N. Khaydukov, F. Ott, A. Rühm, A. Thiaville, J. Torrejón, M. Vázquez, and J. Major, arXiv:1209.3889.

  18. S. V. Kozhevnikov, V. D. Zhaketov, Yu. N. Khaydukov, F. Ott, and F. Radu, J. Exp. Theor. Phys. 125, 1015 (2017).

    Article  ADS  Google Scholar 

  19. A. V. Antonov, A. I. Isakov, V. I. Mikerov, and S. A. Startsev, JETP Lett. 20, 289 (1974).

    ADS  Google Scholar 

  20. K.-A. Steinhauser, A. Steyerl, H. Scheckenhofer, and S. S. Malik, Phys. Rev. Lett. 44, 1306 (1980).

    Article  ADS  Google Scholar 

  21. A. Steyerl, T. Ebisawa, K.-A. Steinhauser, and M. Utsuro, Z. Phys. B 41, 283 (1981).

    Article  ADS  Google Scholar 

  22. I. V. Bondarenko, V. I. Bodnarchuk, S. N. Balashov, P. Gel’tenbort, A. G. Klyain, A. V. Kozlov, D. A. Korneev, S. V. Masalovich, V. G. Nosov, A. I. Frank, P. Khogkhoi, and A. Chimmino, Phys. At. Nucl. 62, 721 (1999).

    Google Scholar 

  23. A. A. Seregin, Sov. Phys. JETP 46, 859 (1977).

    ADS  Google Scholar 

  24. M. Maaza and D. Hamidi, Phys. Rep. 514, 177 (2012).

    Article  ADS  Google Scholar 

  25. S. Sh. Shil’shtein, V. I. Marukhin, M. Kalanov, V. A. Somenkov, and L. A. Sysoev, JETP Lett. 12, 56 (1970).

    ADS  Google Scholar 

  26. S. Sh. Shil’shtein, V. A. Somenkov, and V. P. Dokashenko, JETP Lett. 13, 214 (1971).

    ADS  Google Scholar 

  27. Yu. V. Nikitenko, Phys. Part. Nucl. 40, 890 (2009).

    Article  Google Scholar 

  28. L. J. Norton, E. J. Kramer, R. A. L. Jones, F. S. Bates, H. R. Brown, G. P. Felcher, and R. Kleb, J. Phys. II 44, 367 (1994).

    Google Scholar 

  29. M. Wolff, F. Adlmann, J. Dura, A. Devishvili, G. Palsson, and B. Toperverg, Talk on the Conference on Trends and Perspectives in Neutron Instrumentation: Probing Structure and Dynamics at Interfaces and Surfaces, October 10–13, 2017, Tutzing, Germany.

  30. H. Zhang, P. D. Gallagher, S. K. Satija, R. M. Lindstrom, R. L. Paul, T. P. Russell, P. Lambooy, and E. J. Kramer, Phys. Rev. Lett. 72, 3044 (1994).

    Article  ADS  Google Scholar 

  31. V. L. Aksenov, Yu. V. Nikitenko, F. Radu, Yu. M. Gledenov, and P. V. Sedyshev, Phys. B (Amsterdam, Neth.) 276278, 946 (2000).

  32. V. L. Aksenov, Yu. V. Nikitenko, S. V. Kozhevnikov, F. Radu, R. Kruis, and T. Rekveldt, Poverkhnost’, No. 8, 10 (2000).

  33. V. K. Ignatovich, JETP Lett. 28, 286 (1978).

    ADS  Google Scholar 

  34. G. P. Felcher, S. Adenwalla, V. O. de Haan, and A. A. van Well, Nature (London, U.K.) 377, 409 (1995).

    Article  ADS  Google Scholar 

  35. G. P. Felcher, S. Adenwalla, V. O. de Haan, and A. A. van Well, Phys. B (Amsterdam, Neth.) 221, 494 (1996).

  36. D. A. Korneev, V. I. Bodnarchuk, and V. K. Ignatovich, JETP Lett. 63, 944 (1996).

    Article  ADS  Google Scholar 

  37. V. L. Aksenov, Yu. V. Nikitenko, and S. V. Kozhevnikov, Phys. B (Amsterdam, Neth.) 297, 94 (2001).

  38. S. V. Kozhevnikov, F. Ott, and F. Radu, J. Appl. Crystallogr. 45, 814 (2012).

    Article  Google Scholar 

  39. S. V. Kozhevnikov, F. Ott, and E. M. Semenova, Phys. B (Amsterdam, Neth.) 508, 12 (2017).

  40. S. V. Kozhevnikov, V. K. Ignatovich, and F. Radu, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12, 103 (2018).

    Article  Google Scholar 

  41. Yu. N. Khaydukov, V. L. Aksenov, Yu. V. Nikitenko, K. N. Zhernenkov, B. Nagy, A. Teichert, R. Steitz, A. Rühm, and L. Bottyán, J. Supercond. Nov. Magn. 24, 961 (2011).

    Article  Google Scholar 

  42. Yu. Khaydukov, A. M. Petrzhik, I. V. Borisenko, A. Kalabukhov, D. Winkler, T. Keller, G. A. Ovsyannikov, and B. Keimer, Phys. Rev. B 96, 165414 (2017).

    Article  ADS  Google Scholar 

  43. S. P. Pogossian, J. Appl. Phys. 102, 104501 (2007).

    Article  ADS  Google Scholar 

  44. S. V. Kozhevnikov, F. Ott, E. Kentzinger, and A. Paul, Phys. B (Amsterdam, Neth.) 397, 68 (2007).

  45. S. V. Kozhevnikov, F. Ott, A. Paul, and L. Rosta, Eur. Phys. J. Spec. Top. 167, 87 (2009).

    Article  Google Scholar 

  46. E. Kentzinger, U. Rucker, B. Toperverg, and T. Bruckel, Phys. B (Amsterdam, Neth.) 335, 89 (2003).

  47. F. Radu, A. Vorobiev, J. Major, H. Humblot, K. Westerholt, and H. Zabel, Phys. B (Amsterdam, Neth.) 335, 63 (2003).

  48. F. Radu, M. Etzkorn, R. Siebrecht, T. Schmitte, K. Westerholt, and H. Zabel, Phys. Rev. B 67, 134409 (2003).

    Article  ADS  Google Scholar 

  49. D. E. Popov, V. V. Kaplin, and S. A. Vorobiev, Phys. Status Solidi B 96, 263 (1979).

    Article  ADS  Google Scholar 

  50. V. V. Voronin, E. G. Lapin, S. Yu. Semenikhin, and V. V. Fedorov, JETP Lett. 71, 76 (2000).

    Article  ADS  Google Scholar 

  51. S. V. Kozhevnikov, V. K. Ignatovich, A. V. Petrenko, and F. Radu, J. Exp. Theor. Phys. 123, 950 (2016).

    Article  ADS  Google Scholar 

  52. Y. P. Feng, C. F. Majkrzak, S. K. Sinha, D. G. Wiesler, H. Zhang, and H. W. Deckman, Phys. Rev. B 49, 10814 (1994).

    Article  ADS  Google Scholar 

  53. V. L. Aksenov and Yu. V. Nikitenko, Phys. B (Amsterdam, Neth.) 297, 101 (2001).

  54. S. P. Pogossian, H. Le Gall, and A. Menelle, J. Magn. Magn. Mater. 152, 305 (1996).

    Article  ADS  Google Scholar 

  55. A. Rühm, S. V. Kozhevnikov, F. Ott, F. Radu, and J. Major, Nucl. Instrum. Methods Phys. Res., Sect. A 708, 83 (2013).

    Google Scholar 

  56. S. V. Kozhevnikov, Yu. N. Khaydukov, T. Keller, F. Ott, and F. Radu, JETP Lett. 103, 36 (2016).

    Article  ADS  Google Scholar 

  57. V. K. Ignatovich and F. Radu, Phys. Rev. B 64, 205408 (2001).

    Article  ADS  Google Scholar 

  58. S. V. Kozhevnikov, V. K. Ignatovich, F. Ott, A. Rühm, and J. Major, J. Exp. Theor. Phys. 117, 636 (2013).

    Article  ADS  Google Scholar 

  59. Yu. V. Nikitenko, V. V. Proglyado, and V. L. Aksenov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 961 (2014).

    Article  Google Scholar 

  60. S. V. Kozhevnikov, T. Keller, Yu. N. Khaydukov, F. Ott, and F. Radu, Nucl. Instrum. Methods Phys. Res., Sect. A 875, 177 (2017).

    Google Scholar 

  61. S. V. Kozhevnikov, Yu. N. Khaidukov, F. Ott, and F. Radu, J. Exp. Theor. Phys. 126, 592 (2018).

    Article  ADS  Google Scholar 

  62. S. V. Kozhevnikov, T. Keller, Yu. N. Khaydukov, F. Ott, F. Radu, arXiv: 1808.03497. Submitted to JETP.

  63. F. Ott, S. Kozhevnikov, A. Thiaville, J. Torrejon, and M. Vazquez, Nucl. Instrum. Methods Phys. Res., Sect. A 788, 29 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kozhevnikov.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhevnikov, S.V., Zhaketov, V.D. & Radu, F. Neutron Microbeam from a Planar Waveguide. J. Exp. Theor. Phys. 127, 593–607 (2018). https://doi.org/10.1134/S1063776118100163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118100163

Keywords

Navigation