Skip to main content
Log in

Masking of a High-Reflectivity Sphere by a Layer with a Random Quasi-Zero Refractive Index

  • ATOMS, MOLECULES, OPTICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The method of masking of a large-radius sphere made of an arbitrary material by a masking coating with a random quasi-zero refractive index is substantiated theoretically and experimentally. In this method of masking, the sphere is first coated with a mirror layer (e.g., high-reflectivity silver) and then with a masking layer with a thickness much smaller than the radius of the sphere. The fraction of the external radiation intensity bending around the sphere at the points of observation near the surface of the sphere and the extinction cross section of the sphere with the masking coating for points of observation far away from the sphere are calculated. It is shown that extinction cross section Q of the sphere with a masking coating is much smaller than 2D, where D is the geometrical cross section of the sphere; this corresponds to the masking effect for the sphere in the wavelength range of at least 450–1200 nm in the transparency region of the masking coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. A. E. Dubinov and L. A. Mytareva, Phys. Usp. 53, 455 (2010).

    Article  ADS  Google Scholar 

  2. R. Fleuzy, F. Monticone, and A. Alu, Phys. Rev. Appl. 4, 037001 (2015).

    Article  ADS  Google Scholar 

  3. F. Liu, S. A. R. Horsley, and J. Li, Phys. Rev. B 95, 075157 (2017).

    Article  ADS  Google Scholar 

  4. M. Gharghi, C. Gladden, T. Zentgraf, Y. Liu, X. Yin, J. Valentine, and X. Zhang, Nano Lett. 11, 2825 (2011).

    Article  ADS  Google Scholar 

  5. J. Zhang, L. Liu, Y. Luo, S. Zhang, and N. A. Mortensen, Opt. Express 19, 8625 (2011).

    Article  ADS  Google Scholar 

  6. X. Chen, Y. Luo, J. Zhang, K. Jiang, J. B. Pendry, and S. Zhang, Nat. Commun. 2, 176 (2011).

    Article  ADS  Google Scholar 

  7. O. N. Gadomsky and N. M. Ushakov, Optics of Media with Quasi-Zero Refractive Index. Fundamentals, Nanotechnologies and Applications (OmniScriptum, Germany, 2015).

    Google Scholar 

  8. O. N. Gadomskii, I. V. Gadomskaya, E. G. Zubkov, and A. A. Rusin, JETP Lett. 98, 5 (2013).

    Article  ADS  Google Scholar 

  9. O. N. Gadomskii, I. V. Gadomskaya, and I. A. Shchukarev, Opt. Spectrosc. 120, 781 (2016).

    Article  ADS  Google Scholar 

  10. O. N. Gadomskii and I. A. Shchukarev, J. Exp. Theor. Phys. 123, 184 (2016).

    Article  ADS  Google Scholar 

  11. O. N. Gadomsky, K. K. Altunin, S. N. Stepin, V. E. Katnov, A. A. Rusin, and E. A. Pereskokov, Opt. Commun. 315, 286 (2014).

    Article  ADS  Google Scholar 

  12. O. N. Gadomsky and I. A. Shchukarev, Opt. Commun. 348, 38 (2015).

    Article  ADS  Google Scholar 

  13. P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370 (1972).

    Article  ADS  Google Scholar 

  14. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge Univ., UK, 2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. N. Gadomsky or I. A. Shchukarev.

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadomsky, O.N., Ushakov, N.M., Shchukarev, I.A. et al. Masking of a High-Reflectivity Sphere by a Layer with a Random Quasi-Zero Refractive Index. J. Exp. Theor. Phys. 127, 994–1002 (2018). https://doi.org/10.1134/S106377611810014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611810014X

Navigation