Skip to main content
Log in

Effect of Cr Spacer on Structural and Magnetic Properties of Fe/Gd Multilayers

  • ORDER, DISORDER, AND PHASE TRANSITION IN CONDENSED SYSTEM
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work, we analyze the role of a thin Cr spacer between Fe and Gd layers on the structure and magnetic properties of a [Fe(35 Å)/Cr(tCr)/Gd(50 Å)/Cr(tCr)]12 superlattice. Samples without the Cr spacer (tCr = 0) and with a thin spacer (tCr = 4 Å) are investigated using X-ray diffraction, polarized neutron and resonance X-ray magnetic reflectometry, static magnetometry, magneto-optical Kerr effect, and ferromagnetic resonance techniques. Magnetic properties are studied experimentally in a wide temperature range 4–300 K and analyzed theoretically using numerical simulation on the basis of the mean-field model. We show that a reasonable agreement with the experimental data can be obtained considering temperature dependence of the effective field parameter in gadolinium layers. The analysis of the experimental data shows that besides a strong reduction of the antiferromagnetic coupling between Fe and Gd, the introduction of Cr spacers into Fe/Gd superlattice leads to modification of both structural and magnetic characteristics of the ferromagnetic layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. R. E. Camley, in Magnetism of Surfaces, Interfaces, and Nanoscale Materials, Vol. 5 of Handbook of Surface Science, Ed. by R. E. Camley, Z. Celinski, and R. L. Stamps (Elsevier, North-Holland, 2015).

  2. R. E. Camley and R. L. Stamps, J. Phys.: Condens. Matter 5, 3727 (1993).

    ADS  Google Scholar 

  3. R. E. Camley and D. R. Tilley, Phys. Rev. B 37, 3413 (1988).

    Article  ADS  Google Scholar 

  4. R. E. Camley, Phys. Rev. B 39, 12316 (1989).

    Article  ADS  Google Scholar 

  5. J. G. LePage and R. E. Camley, Phys. Rev. Lett. 65, 1152 (1990).

    Article  ADS  Google Scholar 

  6. R. E. Camley, in Ultrathin Films, Multilayers and Nanostructures, Nanomagnetism, Ed. by D. L. Mills and J. A. C. Bland (Elsevier, Amsterdam, 2006), Vol. 1.

    Google Scholar 

  7. R. E. Camley, Phys. Rev. B 35, 3608 (1987).

    Article  ADS  Google Scholar 

  8. N. Ishimatsu, H. Hashizume, S. Hamada, N. Hosoito, C. S. Nelson, C. T. Venkataraman, G. Srajer, and J. C. Lang, Phys. Rev. B 60, 9596 (1999).

    Article  ADS  Google Scholar 

  9. N. Hosoito, H. Hashizume, N. Ishimatsu, I.-T. Bae, G. Srajer, J. C. Lang, C. T. Venkataraman, and C. S. Nelson, Jpn. J. Appl. Phys. 41, 1331 (2002).

    Article  ADS  Google Scholar 

  10. D. Haskel, G. Srajer, J. C. Lang, J. Pollmann, C. S. Nelson, J. S. Jiang, and S. D. Bader, Phys. Rev. Lett. 87, 207201 (2001).

    Article  ADS  Google Scholar 

  11. Y. Choi, D. Haskel, R. E. Camley, D. R. Lee, J. C. Lang, G. Srajer, J. S. Jiang, and S. D. Bader, Phys. Rev. B 70, 134420 (2004).

    Article  ADS  Google Scholar 

  12. E. Kravtsov, D. Haskel, S. G. E. te Velthuis, J. S. Jiang, and B. J. Kirby, Phys. Rev. B 79, 134438 (2009).

    Article  ADS  Google Scholar 

  13. S. A. Montoya, S. Couture, J. J. Chess, J. C. T. Lee, N. Kent, D. Henze, S. K. Sinha, M.-Y. Im, S. D. Kevan, P. Fischer, B. J. McMorran, V. Lomakin, S. Roy, and E. E. Fullerton, Phys. Rev. B 95, 024415 (2017).

    Article  ADS  Google Scholar 

  14. S. A. Montoya, S. Couture, J. J. Chess, J. C. T. Lee, N. Kent, M.-Y. Im, S. D. Kevan, P. Fischer, B. J. Mc-Morran, S. Roy, V. Lomakin, and E. E. Fullerton, Phys. Rev. B 95, 224405 (2017).

    Article  ADS  Google Scholar 

  15. S. Mangin, M. Gottwald, C-H. Lambert, D. Steil, V. Uhlir, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, Nat. Mater. 13, 286 (2014).

    Article  ADS  Google Scholar 

  16. R. Chimata, L. Isaeva, K. Kadas, A. Bergman, B. Sanyal, J. H. Mentink, M. I. Katsnelson, T. Rasing, A. Kirilyuk, A. Kimel, O. Eriksson, and M. Pereiro, Phys. Rev. B 92, 094411 (2015).

    Article  ADS  Google Scholar 

  17. C. Xu, T. A. Ostler, and R. W. Chantrell, Phys. Rev. B 93, 054302 (2016).

    Article  ADS  Google Scholar 

  18. G. Scheunert, O. Heinonen, R. Hardeman, A. Lapicki, M. Gubbins, and R. M. Bowman, Appl. Phys. Rev. 3, 011301 (2016).

    Article  Google Scholar 

  19. B. Sanyal, C. Antoniak, T. Burkert, B. Krumme, A. Warland, F. Stromberg, C. Praetorius, K. Fauth, H. Wende, and O. Eriksson, Phys. Rev. Lett. 104, 156402 (2010).

    Article  ADS  Google Scholar 

  20. F. Stromberg, C. Antoniak, U. von Horsten, W. Keune, B. Sanyal, O. Eriksson, and H. Wende, J. Phys. D: Appl. Phys. 44, 265004 (2011).

    Article  ADS  Google Scholar 

  21. A. B. Drovosekov, N. M. Kreines, A. O. Savitsky, E. A. Kravtsov, D. V. Blagodatkov, M. V. Ryabukhina, M. A. Milyaev, V. V. Ustinov, E. M. Pashaev, I. A. Subbotin, and G. V. Prutskov, J. Exp. Theor. Phys. 120, 1041 (2015).

    Article  ADS  Google Scholar 

  22. Li Sun, Wen Zhang, Ping Kwan Johnny Wong, Yuli Yin, Sheng Jiang, Zhaocong Huang, Ya Zhai, Zhongyu Yao, Jun Du, Yunxia Sui, and Hongru Zhai, J. Magn. Magn. Mater. 451, 480 (2018).

    Article  ADS  Google Scholar 

  23. C. Ward, G. Scheunert, W. R. Hendren, R. Hardeman, M. A. Gubbins, and R. M. Bowman, Appl. Phys. Lett. 102, 092403 (2013).

    Article  ADS  Google Scholar 

  24. G. Scheunert, W. R. Hendren, C. Ward, and R. M. Bowman, Appl. Phys. Lett. 101, 142407 (2012).

    Article  ADS  Google Scholar 

  25. M. V. Ryabukhina, E. A. Kravtsov, L. I. Naumova, V. V. Proglyado, Yu. N. Khaidukov, and V. V. Ustinov, Phys. Met. Metallogr. 118, 143 (2017).

    Article  ADS  Google Scholar 

  26. Modern Techniques for Characterizing Magnetic Materials, Ed. by Y. Zhu (Springer, New York, 2005).

    Google Scholar 

  27. C. Dufour, K. Cherifi, G. Marchal, Ph. Mangin, and M. Hennion, Phys. Rev. B 47, 14572 (1993).

    Article  ADS  Google Scholar 

  28. W. Hahn, M. Loewenhaupt, Y. Y. Huang, G. P. Felcher, and S. S. P. Parkin, Phys. Rev. B 52, 16041 (1995).

    Article  ADS  Google Scholar 

  29. O. F. K. McGrath, N. Ryzhanova, C. Lacroix, D. Givord, C. Fermon, C. Miramond, G. Saux, S. Young, and A. Vedyayev, Phys. Rev. B 54, 6088 (1996).

    Article  ADS  Google Scholar 

  30. S. Roy, M. R. Fitzsimmons, S. Park, M. Dorn, O. Petracic, I. V. Roshchin, Zhi-Pan Li, X. Batlle, R. Morales, A. Misra, X. Zhang, K. Chesnel, J. B. Kortright, S. K. Sinha, and I. K. Schuller, Phys. Rev. Lett. 95, 047201 (2005).

    Article  ADS  Google Scholar 

  31. A. B. Drovosekov, N. M. Kreines, A. O. Savitsky, E. A. Kravtsov, M. V. Ryabukhina, V. V. Proglyado, and V. V. Ustinov, J. Phys.: Condens. Matter 29, 115802 (2017).

    ADS  Google Scholar 

  32. P. N. Lapa, J. Ding, J. E. Pearson, V. Novosad, J. S. Jiang, and A. Hoffmann, Phys. Rev. B 96, 024418 (2017).

    Article  ADS  Google Scholar 

  33. T. D. C. Higgs, S. Bonetti, H. Ohldag, N. Banerjee, X. L. Wang, A. J. Rosenberg, Z. Cai, J. H. Zhao, K. A. Moler, and J. W. A. Robinson, Sci. Rep. 6, 30092 (2016).

    Article  ADS  Google Scholar 

  34. K. Takanashi, Y. Kamiguchi, H. Fujimori, and M. Motokawa, J. Phys. Soc. Jpn. 61, 3721 (1992).

    Article  ADS  Google Scholar 

  35. N. Hosoito, H. Hashizume, and N. Ishimatsu, J. Phys.: Condens. Matter 14, 5289 (2002).

    ADS  Google Scholar 

  36. J. C. Lang and G. Srajer, Rev. Sci. Instrum. 66, 1540 (1995).

    Article  ADS  Google Scholar 

  37. D. Haskel, E. Kravtsov, Y. Choi, J. C. Lang, Z. Islam, G. Srajer, J. S. Jiang, S. D. Bader, and P. C. Canfield, Eur. Phys. J. Spec. Top. 208, 141 (2012).

    Article  Google Scholar 

  38. H. E. Nigh, S. Legvold, and F. H. Spedding, Phys. Rev. 132, 1092 (1963).

    Article  ADS  Google Scholar 

  39. M. Romera, M. Munoz, M. Maicas, J. M. Michalik, J. M. de Teresa, C. Magen, and J. L. Prieto, Phys. Rev. B 84, 094456 (2011).

    Article  ADS  Google Scholar 

  40. S. Handschuh, J. Landes, U. Kobler, Ch. Sauer, G. Kisters, A. Fuss, and W. Zinn, J. Magn. Magn. Mater. 119, 254 (1993).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

PNR experiments were performed at the NREX instrument operated by the Max–Planck Society at the Heinz Maier–Leibnitz Zentrum (MLZ), Garching, Germany.

Work at APS is supported by the U.S. Department of Energy (DOE), Office of Science, under Contract no. DE-AC02-06CH11357.

Research in Yekaterinburg was performed in terms of the state assignment of Federal Agency of Scientific Organizations of the Russian Federation (theme “Spin” no. AAAA-A18-118020290104-2). X-ray diffraction measurements were performed at the Collective Use Center of IMP.

The work is partially supported by the Russian Foundation for Basic Research (grants no. 16-02-00061, no. 18-37-00182) and by the Ministry of Education and Science of the Russian Federation (grant no. 14-Z-50.31.0025).

We would like to thank A.A. Mukhin, V.Yu. Ivanov, and A.M. Kuz’menko (GPI RAS) for assistance in performing measurements on a SQUID magnetometer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. B. Drovosekov or M. V. Ryabukhina.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drovosekov, A.B., Ryabukhina, M.V., Kholin, D.I. et al. Effect of Cr Spacer on Structural and Magnetic Properties of Fe/Gd Multilayers. J. Exp. Theor. Phys. 127, 742–752 (2018). https://doi.org/10.1134/S1063776118100126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118100126

Keywords

Navigation